

A Gentle Introduction to Robotics
Volume 1: mBlock and the mBot

Charles McKnight

2016
Senestone, Inc.

* * * * * * * *
Copyright © 2016, Senestone, Inc. All rights reserved.

ISBN-10: 0-9975317-0-3
ISBN-13: 978-0-9975317-0-1

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher.

ii

Dedication

When I was a child my grandfather told me to make sure that I spent time educating children when
I was an adult or I would deserve the future I would get. This book is dedicated to those who taught
me as a child and to the children who continue to teach me as an adult.

I also want to express my gratitude, love, and appreciation for my lovely wife, Jie, and my son,
Ian, whose patience and support enabled me to complete this book.

iii

iv

Contents

Contents v

Acknowledgments xi

Preface xiii
Robots All Around Us . xiii
What is a Robot? . xiii
What is Robotics? . xiv
Why Is Robotics Important? . xiv
Why This Book? . xiv

1 Getting Set Up 1
Before You Start . 1
Installing the Arduino Driver . 1
What is an mBot? . 2
Building the mBot . 2
Connecting Power . 2
Connecting to the mBot . 3
Connecting to the mBlock Environment . 4

2 The Software Development Process 5
Requirements . 5
Analysis . 5
Design . 5
Implementation . 6
Testing & Debugging . 6

3 Programming Guidelines 7
Naming Conventions . 7
Valid Characters . 7
Snake-Case vs. Camel-Case . 7
Design First . 8
Breaking Down the Boulders . 8
Do One Thing Well . 8
Flowcharting, Pseudocode, and Design . 8
Pseudo-Coding . 10
Test, Test, Test! . 10

v

CONTENTS

4 The mBlock Programming Environment 11
mBlock and Scratch . 11
A Quick Tour of mBlock . 11
All Scratch Blocks Are Not Supported in mBot Programs 13
Arduino Mode . 14
Editing with Arduino IDE . 15
Block Palettes . 16

Control Palette . 19
Data & Blocks Palette . 21
Operators Palette . 24
Robots Palette . 28

5 Blinking LEDs 35
Program Description . 35
Requirements . 35
Analysis . 36
Design . 36
Program Code . 37
Testing and Validation . 40
Troubleshooting and Debugging . 40
Challenges . 41

6 Play an Octave 43
Program Description . 43
Requirements . 43
Analysis . 44
Design . 44
Program Code . 46
Testing & Validation . 55
Troubleshooting and Debugging . 55
Challenges . 56

7 Press the Button 57
Program Description . 57
Requirements . 58
Analysis . 58
Design . 58
Program Code . 59
Testing & Validation . 61
Troubleshooting & Debugging . 61
Challenges . 61

8 Light It Up! 63
Program Description . 63
Requirements . 63
Analysis . 63
Design . 64
Program Code . 65
Testing & Validation . 66
Troubleshooting & Debugging . 66
Challenges . 67

vi

Contents

9 Ultrasonic Theremin 69
Program Description . 69
Requirements . 69
Analysis . 70
Design . 71
Program Code . 72
Testing & Validation . 75
Troubleshooting & Debugging . 75
Challenges . 76

10 Baby You Can Drive My Bot 77
Program Description . 77
Requirements . 77
Analysis . 77
Design . 79
Program Code . 80
Testing & Validation . 80
Troubleshooting & Debugging . 81
Challenges . 81

11 Where’s My Line? 83
Program Description . 83
Requirements . 83
Analysis . 83
Design . 85
Program Code . 86
Testing & Validation . 87
Troubleshooting & Debugging . 87
Challenges . 88

12 Robotic Movement Part 1 89
Controlling Robotic Movement . 89
Thinking Like an Engineer . 89
Program Description . 90
Requirements . 90
Analysis . 90
Design . 90
Program Code . 91
Testing & Validation . 91
Challenges . 91

13 We Like to Move It! 93
Program Description . 93
Requirements . 93
Analysis . 93
Design . 94
Program Code . 95
Testing & Validation . 95
Troubleshooting & Debugging . 96
Challenges . 96

vii

CONTENTS

14 Robotic Movement Part 2 97
Program Description . 98
Requirements . 99
Analysis . 99
Design . 99
Program Code . 99
Testing & Validation . 100

15 Trace A Shape 101
Program Description . 101
Requirements . 101
Analysis . 101
Design . 102
Program Code . 103
Testing & Validation . 104
Troubleshooting & Debugging . 104
Challenges . 105

16 Obstacle Avoidance 107
Program Description . 108
Requirements . 108
Analysis . 108
Design . 109
Program Code . 111
Testing & Validation . 114
Troubleshooting & Debugging . 114
Challenges . 114

17 Bashin’ at the Basho 115
Program Description . 116
Requirements . 116
Analysis . 116
Design . 117
Program Code . 121
Testing & Validation . 124
Troubleshooting & Debugging . 124
Challenges . 125

18 A-Maze-ing 127
Program Description . 127
Requirements . 127
Analysis . 127
Design . 131
Program Code . 132
Testing & Validation . 135
Troubleshooting & Debugging . 136

19 You Made It! 137

Appendix A: Flowcharts 139

Appendix B: mBot Blocks 141

viii

Contents

Appendix C: Best Practices 149
Process . 149
Requirements . 149
Analysis . 149
Analysis . 149
Implementation . 150
Testing . 150

Appendix D: Musical Note Values 151

Appendix E: Arduino Uno Specifications 153

Appendix F: Resources 155

ix

CONTENTS

x

Acknowledgments

No book is truly an individual effort and as such I would like to express my thanks and appreciation
to Darach and Tom Ennis, Luke Faith, Danyu Zhu, and Ian McKnight for taking the time to review
and critique this manuscript. It just wouldn’t have happened without your insights and comments to
make the text better than it was.

I would also like to extend my thanks and admiration to the following:

Makeblock for creating a wonderful set of robotics kits and parts.

The Lifelong Kindergarten Group at the MIT Media Lab for creating Scratch.

All of the friendly, helpful people on the Makeblock and Arduino forums.

LEGO™ Mindstorms™ EV3 is a product of LEGO System A/S.

The BoEBot is a product of Parallax, Inc.

The Java language and development tools are products of Oracle, Inc.

The mBot and mBlock are products of Shenzhen Maker Works Technology Co., Ltd.

VEX and VEX Robotics are trademarks or service marks of Innovation First International, Inc. VEX
EDR and VEX IQ are products of Innovation First International, Inc.
OS X® is a registered mark of Apple, Inc.

xi

Acknowledgments

xii

Preface

Robots All Around Us

Robots are appearing all over the globe at an ever-increasing pace. Is it an invasion from Mars
or worse, a realization of SkyNet from the Terminator1? No, gentle reader, nothing so dramatic.
The increasing interest in robotics is driven by the appearance of relatively inexpensive hardware
that enables ordinary people to create extraordinary machines to fulfill a variety of needs. South
Korea has recently edged out Japan for the country with the highest robot density with 347 robots
per 10,000 manufacturing employees2 (Japan has a density of 339 robots per 10,000 manufacturing
employees). When you get beyond the manufacturing numbers and begin to add in the large number
of autonomous vehicles (UAVs, self-driving cars, etc.), the trend towards an increasing use of robots
is undeniably clear as are the opportunities for robotic-related skill sets.

With the global focus on Science, Technology, Engineering and Mathematics (STEM), software
development and other technology-based education is being introduced at an increasingly early stage
in schools, often as early as mid-elementary levels. Many middle schools and high schools in the
United States offer technology classes for web robotics as a normal part of their curricula so that
students have the opportunity to gain exposure to the technologies that will potentially be part of
their daily lives. The rise of the maker movement with its emphasis on building things in the physical
world rather than in a virtual world is also spurring the interest and development in multiple areas
of technology, including robotics.

What is a Robot?

Maja J. Matarić provides a clear, concise definition of a robot3 :

"A robot is an autonomous system which exists in the physical world, can sense its
environment, and can act on it to achieve some goals."

This definition excludes tele-operated machines, such as remote-guided UAVs or those machines
requiring a human operator to provide the intelligence to perform their functions. While the definition
flies in the face of the common usage of the term, thanks in no small part to television shows and
movies, these machines are decidedly not autonomous and therefore really should not be referred to
as robots. It should be noted that some robots can be trained to perform their functions though the
use of an external harness controlled by a human, but in this case it is for training only and that the
robot is capable of performing its functions autonomously after being trained.

1Daly, J. L., Gibson, D., & Hurd, G. A. (Producers), & Cameron, J. (Director). (1984). The Terminator [Motion
Picture]. United States: Orion Pictures.

2Source: "10 Countries with Most Robot Density" by Ejaz Khan, http://goo.gl/L9q9oD
3Matarić, Maja J. "The Robotic Primer". 2007. Massachusetts Institute of Technology. ISBN 978-0-262-63354-3

xiii

http://goo.gl/L9q9oD

Preface

What is Robotics?
Robotics is the study of the branch of technology that deals with the design, construction, operation,
and application of robots. The field of robotics is an intersection of many other fields, including,
but not limited to, electrical engineering, mechanical engineering, physics, and software engineering.
With recent developments, many roboticists are also turning back to Nature for inspiration and are
mimicking the mechanisms and patterns found there.

Along with the increased interest in robotics we are seeing an increase the number of hobbyist
kits available for the amateur roboticist. Kits such as the LEGO™ Mindstorms™ EV3 Robotics
Kit, VEX IQ and VEX EDR from Innovation First International, Inc., etc., as well as smaller, less
expensive kits, such as the Parallax BoEBot or the Makeblock mBot that is used in this book are
used in many schools as part of their STEM programs.

Some kits, such as the LEGO™, Parallax or VEX kits are based on a proprietary controller
although the firmware can usually be modified to support other languages. Other kits are based
around Open Source hardware platforms, such as the Arduino or Raspberry Pi and provide a relatively
less expensive entry point. Regardless of the platform, programming language, or programming
environment, they all utilize the same principles with regard to robotic programming, i.e., the
platform utilizes sensors, motors, and other devices to sense and interact with its environment.

Why is Robotics Important?
New discoveries and uses for robots are in the news nearly every day. In Japan, robotic usage ranges
from tasks that are too dangerous for humans to the more personal task of assisting the elderly. As
the field continues to advance, it is vital that people understand the benefits that accompany the use
of this type of automation and how positive uses can improve the quality of life for everyone.

There are many people who see the development of robotic technology as a threat that will result
in the loss of many jobs as robots and other forms of automation come into play. Interestingly, there
are just as many people who believe that just as the mechanical loom displaced the textile workers of
19th century England only led to more affordable goods in greater quantities, so will robotics and
automation lead to lower prices, greater availability of goods and services, and the creation of new
jobs.

Regardless of which side of the argument you are on, developing the technology skills necessary
to thrive in the coming economy is vitally important.

Why This Book?
This book is an introduction to robotics and robotic programming using the mBlock4 development
environment and the mBot5, a STEM-oriented robot kit. Although there are many books available
for programming the LEGO™ Mindstorms™system and Arduino-based systems in general, most of
the robot kits are in the $350 range and up and are therefore beyond the reach of many schools and
students.

At the time of this writing, an mBot could be purchased for less than $100 USD and offers an
excellent starting point into understanding robotic programming, the use of sensors, and controlled
movement via electric motors. The kit is based on the Arduino ecosystem and can be further
expanded through additional sensors and other parts that are available from Makeblock6.

The mBlock development environment is based on MIT Scratch 2.0 offline editor and is fully
open source so that additional blocks can be added to support new sensors and devices. With a

4mBlock is derived from the MIT Scratch project by Makeblock (http://mblock.cc).
5mBot is a robot kit meant for use in STEM environments that has been developed by Makeblock.
6http://makeblock.cc

xiv

(http://mblock.cc
http://makeblock.cc

rapidly growing community, the combination of the mBot and the mBlock development environment
provide a compelling approach from both a cost and capabilities standpoint.

In any case, enough preaching. Let’s get on with learning!

Questions about the book may be sent to epubs@senestone.com.

Source code is available at Github https://goo.gl/CWROM5.

xv

mailto: epubs@senestone.com
https://goo.gl/CWROM5

Preface

xvi

1 | Getting Set Up

Before You Start
Programming a robot requires that you have a robot (the mBot in our case) and an installation
of the mBlock Integrated Development Environment (or IDE). When you have successfully built
the robot and have attached batteries, it is time to download the IDE from Makeblock (http:
//www.mblock.cc/index.php). You will need to download and install the version for your operating
system.

NOTE: Only Mac OS X and Windows are supported at the time of this writing. If you
use Linux, you will either need to install Wine and use the Windows version or some other
virtualization platform that supports Windows or OS X.

Installing the Arduino Driver
When you have downloaded and installed the mBlock programming environment, you will need to
click on the Connect menu item, and select the Install Arduino Driver from that menu. Follow the
instructions that appear on your screen to install the Arduino driver.

Figure 1: Install the Arduino driver

The Arduino device driver enables the mBlock IDE to recognize the mCore circuit board when it
is attached via a USB cable. Check the Makeblock forums7 to see where the most current drivers
can be downloaded. If you are using OS X and have installed the driver but you still cannot connect
to the mBot, you may have a driver conflict.

There is an excellent set of troubleshooting instructions at this link8. The site owner also sells
signed USB drivers for OS X. If you go this route, you may need to create a symbolic link to the

7forum.makeblock.cc
8https://goo.gl/FF9MYc

1

http://www.mblock.cc/index.php
http://www.mblock.cc/index.php
forum.makeblock.cc
https://goo.gl/FF9MYc

1 | Getting Set Up

driver because mBlock has trouble with the length of the name of the driver9

To communicate with the mBot (which is based on the Arduino Uno architecture), you must be
able to connect via the USB (Universal Serial Bus) serial cable provided with the mBot kit. This
serial connection enables you to upgrade the firmware on the mBot, reset the default program, or to
upload your own programs by sending the information to the onboard programmer. In turn, the
onboard programmer overwrites the memory of the mBot with the new information.

What is an mBot?
The mBot is an affordable, STEM-oriented robotic kit produced in China by Shenzhen Maker Works
Technology Co., Ltd. The kit is based on the Arduino Uno architecture and takes approximately
15-30 minutes to assemble. Due to its target audience, there is no soldering required. Makeblock also
offers a number of add-ons to expand the mBot platform.

Although the mBot is based on the Arduino Uno platform, it is not a ’genuine’ Arduino. However,
you can program the mBot via the mBlock programming environment (which is based on MIT’s
Scratch 2.0) or the Arduino programming environment included with mBlock.

A third option is to download the libraries from the Makeblock-Official repository on Github and
install them into a standalone Arduino programming environment. This last approach is beyond the
scope of this book, but will be covered in the next volume in the series.

When writing programs for the mBot, it is important to realize that the mCore board is a clone
of an Arduino Uno, an open source micro controller board. The architecture of the Arduino Uno
(and its clones) provides 32 Kilobytes of Program Memory (PROGMEM) and 2 Kilobytes of memory
for variable storage (SRAM).

This differs from the memory in a general purpose PC where all of the memory is shared by the
program and its variables and requires care when defining variables. In fact, if you use up all of the
available 2 Kilobytes of SRAM, your program will crash so be careful!

Building the mBot
When you open your mBot kit, you will find instructions that will walk you through building the
mBot. It is very important that you follow the instructions carefully to ensure that the mBot is built
correctly10.

Connecting Power
If you have a Lithium Polymer (LiPo) rechargeable battery (available separately from the kit), you
can use it in place of the battery pack that comes with the kit and charge it through the USB cable
because the mBot has a charging circuit built into its circuit board. The LiPo battery is likely less
expensive in the long term because it can be recharged where you would have to replace the AA
batteries when they run low.

You can also use rechargeable AA batteries and recharge them if you would prefer. If you use AA
batteries, it is strongly advised that you replace (or recharge if you are using rechargeable batteries)
all of the batteries at the same time. Otherwise, the weaker batteries will drag down the charge of
the other batteries at a faster rate.

9Peter van Nes posted a fix in the Makeblock forums. (http://goo.gl/px8od8)
10Be sure to pay extra attention when connecting the motors. Hooking the motors up backwards is one of the most

common errors.

2

http://goo.gl/px8od8

Connecting to the mBot
The mBot kit comes with a USB serial cable that enables the mBot to be connected to your computer.
This cable has a USB standard-A male connector on one end and a USB standard-B male connector
on the other end.

Figure 2: USB Standard-A (left) and USB Standard-B (right) male connectors

The USB standard-A male connector is plugged into a USB port on your computer and the USB
standard-B plug goes into the mBot.

Figure 3: mBot USB Standard-B Female Connector

3

1 | Getting Set Up

Connecting to the mBlock Environment
As general rule, turn on the mBot before connecting it to the computer. In addition to avoiding a
small power spike that occurs when the mBot starts (that may cause your computer to reboot). This
practice will ensure that the computer detects the mBot when it is connected to the computer. After
the mBot is connected to the computer, click on the Connect menu item, followed by clicking on the
Serial Port submenu item.

Figure 4: USB Serial Port Connection menu

What you will see under the Serial Port submenu item will depend on the operating system. On
a Windows system, you will see COM ports. If more than one COM port appears, it is likely that
the mBot is on the last COM port on the submenu. If your computer has OS X, you should see an
entry for /dev/tty.wchusbserialxxx or something similar.

If you have successfully connected the mBot to the mBlock IDE, you should see the message
"Serial Port Connected" in the title bar indicating that the mBot is connected.

Congratulations! You are now ready to begin writing and uploading your programs!

4

2 | The Software Development Process

Developing software may seem like a difficult task, but it follows a process that will enable you to be
successful in creating your programs for the mBot. The process generally consists of five major steps:

1. Requirements

2. Analysis

3. Design

4. Implementation

5. Testing and Debugging

There are many ways to approach software development, but unless you are just hacking away at
a program you will find that spending some time with each of these steps will decrease the amount
of time required to be successful in your development efforts.

Requirements
Requirements specify what the program must do, such as turning on an LED, making sounds, or
solving a maze. They also provide a means for the developer to demonstrate that the program is
complete. There are many ways to define requirements, but a good general rule of thumb is limit
each requirement to a single thought or capability. For example, solving a maze might be the overall
requirement for a robotic program. However, it might be good to know if there is a time constraint
for solving the maze because this will help determine how you approach the design of the program.
Likewise, if a requirement cannot be fulfilled the developer needs to call this out early on so that
the requirement can be refined or eliminated. In any case, all programs start with some set of
requirements so that you will know what you are building.

Analysis
Analysis is the process of reading and understanding the requirements so that you can identify what
you will need to do to perform the work associated with those requirements.

Analysis also allows you to identify what other things need to be done to support the design
for the implementation of the requirements, such as whether or not you need to connect with other
systems or if you need to do the work within a particular period of time.

Design
Design is the process of determining how that you will implement the requirements based on the
results of your analysis. This point in the development process is where you design the program logic
in detail.

5

2 | The Software Development Process

Note: Analysis answers what needs to be done and Design answers how does it need to be done.
The two are often intermingled which can lead to errors. Make sure that you take the time to
understand what before diving into how.

Implementation
At this point of the process, you are actually writing the code and test code for your application
as well as updating your design and/or analysis documents if you discover that you have missed
something.

Testing & Debugging
This final phase of the development process ensures that your application works as intended and
fulfills the requirements. If it is not working correctly, this phase is where you would spend time
debugging the errors in your code.

As with implementation, if you discover something that was not originally seen in your analysis
or design, you need to go back and update those items so that the final code will match them.

Why All the Fuss About Going Back to Update Analysis and Design Documents?

For our applications, it is a matter of developing and practicing good habits. However, other
reasons for updating the analysis and design documents are:

* To enable others to understand what you did, how you did it, and why.

* To remind yourself of what, how and why when you come back to that code in a few
months.

* To identify reusable items for another program.

But That’s Not Agile! That’s a Waterfall!

If you study Agile programming, you will see that it essentially breaks down a large problem
into smaller pieces instead of trying to build the entire system all at once. The rationale is
that shorter iterations allow the product to be tested more frequently as it grows and evolves
as opposed to waiting until the end to test everything. Each iteration ends with a shippable,
functional product that has been well tested.

This approach supports the notion that requirements may change over the lifetime of the
development and provides the development team with the opportunity to reprioritize requirements
based on customer feedback. However, each piece is governed by one or more ?user stories?
which act as the requirements. The developers responsible for each piece (or sprint) have to
spend time understanding the requirements (analysis) and determining how they will implement
(design) the code. The Agile process also emphasizes automated testing at a number of different
levels.

With all of the same steps being applied to each iteration, I’d submit that Agile frequently
is little more than a series of small waterfalls rather than one big one.

Hopefully you can understand why following the process is important. It is like solving a
complicated problem in mathematics where you must follow all of the steps to get a correct answer.

6

3 | Programming Guidelines

Naming Conventions
What is in a name? Well, everything really. Choosing good names makes it easier to understand the
intent of the code. This concept applies to variables and custom blocks. Generally speaking, one
should use a highly descriptive name so that it is obvious what is being looked at.

For example, naming a variable ‘a’ is certainly valid but a name like ‘Color’ would let the reader
know that the variable is a color, not just a random value. Naming a variable ‘CurrentColor’ is more
readable than a one or two character name. Remember that the more descriptive the name, the more
self-documenting the code will be and this practice will reduce the number of comments needed to
describe the code.

Valid Characters
Valid characters for program names depend on the underlying operating system, but usually are
comprised of letters, numbers, or underscores. However, names for blocks and variables should
begin with a letter or an underscore. The reason for this constraint is that the Scratch code will be
translated into C/C++, the native language of the Arduino, and that language requires that the
first character be a letter or an underscore. The rest of the name can be any combination of letters,
numbers, and underscores.

You might wonder if spaces can be used, but they cannot. When mBlock generates the underlying
Arduino code, it uses the name of the block or variable. Because spaces are not allowed in Arduino
code, everything after the space and the space itself will be ignored. If you have two (or more) blocks
or variables that start with the same characters before the space, the Arduino compiler will treat the
duplication as an error and it will not finish compiling or uploading your code.

Snake-Case vs. Camel-Case
If a variable or block name has more than one word in it, the two most common conventions are
Snake-Case and Camel-Case.

Snake-case uses underscores to separate each word. For example ‘my function’ becomes my_function
and ‘my variable’ becomes my_variable. The proponents of this convention assert that the underscores
make the names more easily read than camel-case names.

Camel-case names mix uppercase and lowercase letters to signify the beginning of each word. The
general practice is to make the first word of a block (function/method) all lowercase and to have the
rest of the words start with a capital letter. Variables differ slightly in that the practice is to start
all of the words with a capital letter.

For example, a block named ‘my function’ becomes myFunction and a variable named ‘my variable’
becomes MyVariable. Camel-case has been the choice for many languages, such as Java11, and as
such has a large number of proponents as well.

11Java is owned by the Oracle Corporation

7

3 | Programming Guidelines

Both naming practices are used in industry, although snake-case has fallen out of favor and
camel-case is more often seen. You should use whichever practice works for you, but be consistent.

Design First
One of the first things that new developers tend to do is to jump in to writing code for their programs.
While this may work out for a simple program with a few steps, it frequently results in disaster and
a lot of rework in larger programs. The lesson that should be learned is to think about what you
need to do and take the time to design your programs. The actual coding of the solution becomes
much easier and there are fewer surprises that require rework.

Current popular programming philosophy revolves around Agile programming seems to eschew
‘big upfront design’ in favor of directly coding from user stories and constantly ‘refactoring’ the code.
While this approach has merit, the author is of the opinion that some thought about the problem
needs to occur before jumping into coding a solution regardless of the size of the program. If you do
not understand the problem, you will spend a lot of time re-coding your program!

Frequently a simple flowchart will suffice to document and test your thoughts before spending
time actually coding the solution. In the end, it is your choice on how you wish to work, but choose
wisely and be consistent.

Breaking Down the Boulders
When working through a large problem, it is a good idea to break the problem into smaller pieces
that are more easily solved. This ‘divide-and-conquer’ process also helps you to break up the program
into blocks of code that may be potentially reused later in other programs.

Do One Thing Well
A common error in design is the tendency to have a ‘do-everything’ block in the flowchart. This type
of block represents a large quantity of functionality and often looks like the center of a spider web in
a flowchart. This practice is heavily discouraged because in addition to not communicating exactly
what is going on inside of the block, it makes it challenging to implement and debug code based on
the design. To avoid this situation, make sure that your blocks define one operation or concept.

In high-level flowcharts, you may see blocks that represent a related set of functionality. Do not
confuse these with a do-everything block.

A common approach defines the high-level program logic as a flowchart and then provides
additional diagrams that show the specific functionality within a high-level block. This top-down
approach enables the designer to provide the right level of detail for each diagram.

Flowcharting and Pseudocode Design Tools
Two common methods for designing programs are flowcharting and pseudocode.

Flowcharting
Flowcharting provides a graphical approach to designing the flow of the program, enabling designers
to see how the program will work and how data will flow through it (See Appendix A: Flowcharts for
a brief overview of the different common symbols).

The default flow of execution is sequential unless otherwise altered through the use of loops
and decision-based branches. As you will see in Figure 5, a sequence structure is simply a series of
steps that are executed in the order they are arranged, i.e., a sequence. Most mBot programs are

8

written around this concept due to the single-core, sequential execution that occurs within most
micro-controllers.

Much of our programming in the mBlock environment will be sequential. The micro-controller on
the main board of the mBot does not directly support multi-tasking nor does the Arduino have an
operating system that supports multitasking12. In fact, the Arduino doesn’t have an operating system
at all so your program is in direct control of the robot hardware. Therefore we must formulate our
programs with this in mind. The important thing to keep in mind is that most sequential programs
have a definite beginning and a definite ending.

The first thing most programmers generally do after the start block is to define any variables and
set the starting values for those variables. This step is called ‘initialization’ and will be seen in most
programs.

If you have no variables to define or to set initial values for, you do not have to have an initialization
step. This will be the case for many simple programs, but be aware that it is a good practice for
complex programs to do as much of your initialization in one place as possible.

This practice cuts down on the need to search through all of the code to determine what values
your variables are starting with. We will cover methods to define and initialize variables when we
begin writing programs that need them.

Figure 5: Simple Sequence Flowchart

As the name implies, a sequence is executed one step at a time in the order listed. Each step in
the flowchart is a process, or series of program instructions. In more complex programs, the flowchart
will contain decision symbols that define places where the flow of the program execution may change
based on some value or condition.

This approach works well to provide a quick insight into the flow of execution, but may be light
on the details in each step. If a step contains a number of sub-steps, it may be diagrammed out

12There are advanced techniques that mimic multitasking, but they are beyond the scope of this book.

9

3 | Programming Guidelines

on a separate page. With modern flowcharting tools, one can often dive into the step to see what
sub-steps are occurring where doing so with paper diagrams would be cumbersome and tedious.

Pseudo-Coding
Pseudo-coding defines the program by expressing execution steps as short phrases. An example of
the program above in pseudocode would be:

When the program starts
Execute Step 1
Execute Step 2
Execute Step 3
Execute Step 4

End the program

Figure 6: Pseudocode Example

This format works well when each step has a significant amount of details that need to be called
out. It also can use additional indented steps to represent the sub-steps in a process. However,
reading through a large pseudocode document can be quite tedious.

Designers will often use flowcharts for the overall program flow and detail the specifics in
pseudocode. There really is no hard and fast rule other than use what works for you. However, make
a point of designing first so that you know what you need to do!

Test, Test, Test!
Testing allows you to verify that your program is correct and that it is performing as you expect.
When you are designing a program it is important to be thinking about how that you will test each
part of the program.

This is an area where going through the process of creating the flowchart diagrams will pay
dividends because it will allow you to think about where things might go astray and what that you
should do about them before you spend time coding a bad solution.

A good test will select a feature and determine whether or not the feature is performing as
expected. This is called golden path testing.

However, it is equally important to have tests that intentionally use bad data to see how the
program will react. Quite often this type of testing will reveal instances where you might need to
rethink how you are doing things to avoid the errors.

Another area is performance testing where the program is tested to see how quickly it can execute,
to identify potential places that the program can be optimized, and also to determine how resources
such as memory or processor time are being used.

Each of these areas (and many more) enables the developer to create a robust program with the
best possible performance. There is an entire industry that is focused on software and hardware
testing so you should not overlook learning these valuable skills.

10

4 | mBlock Programming Environment

mBlock and Scratch
mBlock programs are written in a language named Scratch that is developed by the Massachusetts
Institute of Technology. It is a visual, block-oriented language that is used for teaching programming.
However, it is also suitable for a wide number of other applications.

For the purposes of this book, we will cover the parts of the mBlock IDE that we will use to write
programs for the mBot and the Scratch palettes that apply to mBot programming. We will also do a
walk through of the blocks on the Robots palette that are specific to the mBot.

Although we will discuss some of the mBot blocks in this chapter, you may consult Appendix B:
mBot Blocks as a reference for the mBot-specific blocks and their functions. For blocks in the other
palettes, you may consult any of the many online references and tutorials for Scratch 2.0 listed in
Appendix F: Resources.

A Quick Tour of mBlock
mBlock is an Integrated Development Environment (IDE) that provides all of the tools necessary to
create programs for the mBot and other Makeblock robots. mBlock also integrates a version of the
Arduino IDE, the native environment for writing Arduino code (remember, the mCore board is an
Arduino clone) and uses these tools when compiling and uploading code to the mBot.

When you first launch the mBlock IDE, you will see the following screen as mBlock launches into
Scratch Mode:

Figure 7: mBlock IDE

11

4 | The mBlock Programming Environment

mBlock Panels

Stage In the upper left-hand corner you can see the stage
where any sprites will appear. In this case there is a
panda sprite.

Sprites & Backdrops The lower left-hand corner contains a list of sprites
and backdrop images for the stage.

Palettes The palettes for Scripts, Costumes, and Sounds oc-
cupy the center of the mBlock IDE.

Programming Area The area to the right of the palettes is the program-
ming area. You can drag blocks from the palettes
to create programs for the mBot. Because this is
a modified version of the Scratch 2.0 IDE, you can
also create Scratch programs as well. When running
your programs from within the mBlock IDE, you are
allowed to use any of the Scratch blocks as well as
those on the Robots palette. You can also use the
sprite to display debugging messages.

Zoom There is a pair of small magnifying glass icons in
the bottom right-hand corner of the programming
area that will allow you to zoom in and out of the
code area. You can also click and hold the left mouse
button to pan left or right as needed to move around
the programming area.

Table 1: mBlock Panels

12

All Scratch Blocks Are Not Supported in mBot Programs
It is important to note that if you create an mBot program that will be uploaded to the mBot via the
USB cable, there will be many Scratch blocks that will not work. The IDE will notify you when you
are using unsupported blocks by displaying a pop-up dialog that contains the unsupported blocks. In
Figure 8 you can see an mBot Program ‘hat’ block followed by a Scratch say [message] block.

Figure 8: mBot Program with an Unsupported Block

If you attempt to compile and upload this program, you will see the dialog below:

Figure 9: Unsupported Block Dialog

Why does this occur? The unsupported blocks generally require the program to be run on a
computer and its system resources, and in this case the say block requires that its message be
displayed on screen by the sprite in the Stage area. However, the mBot does not have a built-in
screen so this function will not work if the program is loaded into the mBot.

For an mBot program, the code generator only generates code for the functions associated with
devices on the mBot. Any block that is not supported will cause the Unsupported Block dialog to
pop up13 and mBlock will not allow you to continue until you have removed all unsupported blocks
from your program.

13Occasionally you will also see the Unsupported Block Dialog pop up when you load a new program to replace one
that is already loaded in mBlock. This is a minor bug and can be safely ignored.

13

4 | The mBlock Programming Environment

Arduino Mode
In the Arduino Mode (Edit->Arduino Mode), the IDE will hide everything but the palettes and the
programming area. The Arduino Mode will also disable any palettes or hide any blocks that are
not supported by the Scratch to Arduino code generator so that you cannot select anything that
cannot be used. Therefore, it is recommended that you write your mBot programs in Arduino Mode
to avoid inadvertently using unsupported blocks.

Arduino Mode also opens a window on the right-hand side that shows the Arduino code being
generated as you add, modify, and remove blocks.

Figure 10: Arduino Mode

You should see several buttons over the Arduino code window, Back, Upload to Arduino, and
Edit with Arduino IDE (we will not need the binary mode, char mode, or send buttons in this
book so they will be ignored). Let’s briefly cover their functions.

Back

The Back button will end the Arduino Mode and go back to Scratch mode.

Upload to Arduino

The Upload to Arduino button will launch the compiler to convert the Arduino code you see on the
screen to a binary format that can be uploaded to the mBot. If the compilation is successful, the
program will be uploaded to the mBot. If it is not successful, the error(s) will appear in the grey
area under the white code area. If the mBot is not connected to the mBlock IDE, you will see the
dialog in Figure 11.

14

Figure 11: mBot Not Connected Dialog

If this occurs simply insert the USB cable into the mBot, then connect the mBot to the mBlock
IDE via Connect->Serial Port. You should then be able to compile and upload the program to the
mBot.

Editing with Arduino IDE
The mBlock IDE is integrated with the Arduino IDE for the purposes of generating code that can be
easily uploaded to the mBot, compiling the code, and uploading the code to the mBot. To accomplish
this feat, the Makeblock team has also provided a copy of the Arduino IDE that is already configured
to work with the mBot (and other Makeblock products).

Let us take a quick look at a sample program while mBlock is in Arduino mode. Note that the
code in the white area roughly corresponds to the blocks.

Figure 12: Arduino Code Generated from the mBlock Program

15

4 | The mBlock Programming Environment

Now click the Edit with Arduino IDE button and mBlock will launch the Arduino IDE and load
it with the sample code from the mBlock window.

Figure 13: Arduino IDE with Code Generated by mBlock

Everything in the white code window in mBlock has been copied to an Arduino project. The
Arduino environment enables you to write programs that are too complex or too advanced for mBlock.
However, the Arduino IDE is beyond the scope of this book and is only mentioned for completeness.

Block Palettes
mBlock has several palettes of blocks that are divided into the following categories:

Palette Description
Motion Sprite movement blocks
Looks Appearance-related blocks for sprites / State
Sounds Sound-related blocks (Stage-only)
Pen Drawing blocks (Stage-only)
Data & Blocks Custom variables, lists, blocks
Events Event management
Control Script control structures (loops, waits, if/if-then)
Sensing Sprite/video controls (Stage-only)
Operators Mathematical and logical functions
Robots mBot-specific blocks14

Table 2: Block Palette Table

14mBlock also supports other robot kits, but they are beyond the scope of this book.

16

For the purposes of this book, we will be looking at the palettes for Data & Blocks, Control,
Operators, and Robots. Let’s look at the kind of blocks that are in the palettes by type and then we
will dive deeper to explore each of the palettes.

Block Types

Each palette contains many different types of blocks that can be used to create a program. Each
block falls into a particular category, so let’s first look at the block types.

Hat Blocks

A hat block is used to start a script.

Figure 14: Hat Block

Control Blocks

Control blocks such as loops or if/if-else statements are referred to as C blocks because they wrap
around a set of blocks.

Figure 15: C Blocks

17

4 | The mBlock Programming Environment

Operator Blocks

Operator blocks are hexagonal (comparison or logical operations) in shape. These blocks either
provide comparison functionality or return a value based on the operation.

Figure 16: Comparison and Logical Operators

Reporter Blocks

Reporter blocks are oval-shaped and provide a value usually set by the hardware. The Reporter
blocks supported by mBlock for robotic programming are currently limited to numerical operations
for programs that will be run on the mBot.

Figure 17: Arithmetic Reporter Blocks

Stack Blocks

Stack blocks allow the programmer to set a value or to have the program execute an operation such
as turning on an LED or motor. Stack blocks are rectangular and have a tab on the bottom left of
the block with a matching indentation on the top of the block.

Figure 18: Stacking Block

18

Control Palette
The Control Palette of the mBlock IDE contains the controls for looping, decisions, and timers.

Delays, Delays, Delays

Hurry up and wait. Although most programs need to execute as quickly as possible, there are
occasions where you may want to pause until a condition has been met, such as a button being
pressed or a certain amount of time has passed. Thanks to its Scratch heritage, mBlock provides two
important blocks for pausing your program.

Wait Block

The Wait block causes the program to pause the program for the designated time in seconds. The
oval shape of the white input area indicates that the wait block requires a numerical input. This
should make sense to you because time is measured in numerical units. You can also put a numerical
variable into the input area instead of a number.

It is important to realize that *NOTHING* will occur in the rest of the program while the
wait block is waiting. While there are certainly times that a wait is valuable you should make sure
that it is exactly what you want to do.

Figure 19: Wait Block

In the example above, the wait [value] secs block will wait for the number of seconds specified by
the value parameter.

Wait Until Block

The wait until block causes the program to pause until the specified condition occurs (Figure 20).
You can see that the wait until block has a hexagonal white input area. This shape corresponds to
the comparison and logical operators and indicates that the condition must evaluate to true for the
loop to exit. If the comparison evaluates as false, the loop will continue to execute. A variable is
normally used for the value being tested.

Figure 20: Wait Until Block

In the example above, the wait until [condition] block uses a comparison operator to test whether
the value of a variable Flag is equal to 1.

Loops and Decisions

When creating a program you will often notice that you have a series of code blocks that need to be
executed multiple times. In traditional programming languages, these instructions might be isolated
into functions if there are many steps to execute.

The mBlock/Scratch environment supports this capability (see Custom Blocks in the Data &
Blocks palette section) and it is largely considered a “best practice.” However, if you are executing a
small number of lines but you need to do so repeatedly, then you might consider using a loop block.
The mBlock/Scratch IDE supports three different loop types: Repeat, Forever, and Repeat Until.

19

4 | The mBlock Programming Environment

Repeat Loop

The repeat block (shown below) is also called a for-loop in some languages. The block works by
sequentially executing the instructions it contains for the number of times specified in the loop block.
If you use a variable instead of a value in the input area, you can control the value of the variable
from within the loop and potentially exit early if desired.

Figure 21: Repeat Loop Block

The example above repeats the blocks within the loop ten times before exiting the loop and
continuing on with the program. This type of counting loop is available in most computer languages
and typically takes the form of a for loop.

Forever Loop

The forever block never stops repeating its instructions and cannot be broken out of. When running
your programs on the mBot, this loop runs continuously until you turn off the power to the mBot or
load another program.

Figure 22: Forever Loop Block

Repeat Until Loop

The repeat until block (shown below) will repeat its instructions until a pre-selected condition is met.
The boolean operator specifying the condition will be in the small hexagonal slot on the top line of
the Repeat Until block.

Figure 23: Repeat Until Loop Block

If-Then Block

The if-then block enables the program to make a decision based on some pre-selected condition.
This block will execute the instructions it contains if the pre-selected condition is met. The boolean
operator specifying the condition will be in the small hexagonal slot on the top line of the If-Then
block.

Figure 24: If-Then Block

20

If-Then-Else Block

The if-then-else block enables the program to select between two paths of execution based on the
specified boolean condition. If the specified boolean condition is met (i.e., evaluates to true), the
block will execute the first set of instructions. If the condition is not met, the block will execute the
second set of instructions.

Figure 25: If-Then-Else Block

Data & Blocks Palette
Variables

Variables are used to hold values (numbers, text, etc.). Each variable has a unique name, allowing
the variable name to be used in place of the value. When you select the Data & Blocks palette and
click Make a Variable, you will see the dialog below.

Figure 26: Make a New Variable Dialog

There is a place to enter the variable name, and an option to limit the visibility of the variable to
a single sprite (local scope) or to all sprites (global scope). You will see the word scope used a lot in
other languages so let’s take a moment to understand what scope really means to the programmer.

Local scope (visible to only one sprite) means that no other sprite can see or change the value of
the variable. This feature helps to eliminate bugs caused by other sprites changing the value of a
variable in an unexpected way.

Global scope (visible to all sprites) is useful when the programmer needs to share information
among all of the sprites. Global scope is like a blackboard where anyone can see it and change what
is on the blackboard.

With mBot programs, there are no individual sprites, so be sure that any variables you create
have global scope that allows all sprites to see them.

Once you have created a variable, you will see additional blocks displayed in the Data & Blocks
palette.

Important Note

mBlock’s Arduino code generator currently only generates numerical variables. Support for
strings has not been added at this time. Attempting to use a variable with a string will generate
error messages. This limitation does not apply when writing native Arduino code as we will see
in volume 2 of this series.

21

4 | The mBlock Programming Environment

Figure 27: MyVariable Created and Added to Palette

Blocks

The Make Block button creates a new custom hat block that you can name. You can add more
blocks under the newly created hat block and then use it in your programs as a custom block when
you need specialized behavior but want to keep the main program flow short and clean.

So how does one create custom blocks? Select the Data & Blocks palette, and click on the Make
a Block button. You will see the dialog below.

Figure 28: New Block Dialog

Click on the purple square to give your block a name.

Figure 29: Naming the Block

If your block needs to receive values to execute an operation, click the arrowhead by Options to
see the available input options.

22

Figure 30: New Block Input Parameter Options Dialog

You should note the shapes of the inputs correspond to the input shapes on other blocks.
Specifically, the numeric input shape is an oval, the string input shape is a rectangle, and the boolean
(or comparison) input shape is a hexagon.

You can use the Add label text to make the name of the block read more like a sentence by
inserting words between the other inputs. You can add as many inputs as you like, but as a general
rule you should try to keep the number to as few as the block actually needs to do its work.

In the figure below we have added a numeric input and a boolean (logical) input. Note the ‘x’ in
a circle above each of the inputs. If you decide that you do not need the input variable, click the ‘x’
to remove it.

Figure 31: Custom Block with Two Inputs Example

You can think of the input variables (called function or method signatures in other languages) as
a template you use to create a copy of the block. From this point you will see a new hat block in the
programming area and a new block on the Data & Block palette.

23

4 | The mBlock Programming Environment

Figure 32: After Creating a Custom Block

You can now use the new block just like any other block. However, it is important to realize that
blocks created in your program exist only within your program.

Important Note

mBlock does not support copy and paste operations between projects. If you have developed a
set of blocks that you want to reuse, it is a good idea to put them all into single project and
make a copy of the project whenever you start a new one so that you will have all of the blocks
there without having to recreate them.

Operators
mBlock provides all of the operators available in Scratch 2.0. These operators include mathematical
operations, comparison operations, logical operations, and string operations.

Arithmetic Operator Blocks

The arithmetic operator blocks support addition, subtraction, multiplication, and division. The values
(or variables) are placed in the white circles on the blocks. Each block acts like a set of parentheses to
ensure that the proper order of operations occur when executing a calculation. Additional arithmetic
operator blocks can also be placed on a white circle to represent nested operations within an additional
set of parentheses.

Figure 33: Arithmetic Operator Blocks

Random Number Within A Range

The Pick Random block provides a random number generator that will return a value within the
specified range. The first input slot represents the beginning of the range and the second input slot
represents the end of the range.

Figure 34: Pick a Random Number in a Range Block

24

Comparison Operator Blocks

The Comparison Operator blocks provide the operations of greater than (>), less than (<), equal to
(=) for numeric values. Like the arithmetic operator blocks, each comparison block is surrounded by
parentheses to ensure proper evaluation. Compound comparison statements can be constructed by
nesting additional comparison operators.

Figure 35: Comparison Operator Blocks

Logical Operator Blocks

The Logical Operator blocks provide boolean evaluation expressions for the logical operators and,
or, and not. You may note that the hexagonal slots provide the ability to use other comparative or
logical operator blocks to create compound expressions.

The ability to use these other blocks in this fashion is referred to as nesting, where other blocks
are nested within each hexagonal slot. When you are thinking through nested expressions, just
remember that each comparative or logical operator block should be assumed to be surrounded by
parentheses.

Figure 36: Logical Operator Blocks

Logical and will evaluate as true if both expressions being evaluated are true and will evaluate to
false otherwise.

The logical or will evaluate as true if either of its conditions are met and will only evaluate to
false if both conditions are false.

Logical not will invert the result of a boolean comparison, i.e., if the expression has evaluated to
true a logical not will change the value to false and vice versa.

String Operator Blocks

The string operator blocks appear to be more useful in Scratch mode because variables in the
generated Arduino code are declared as a double precision floating point number. This likely makes
sense in Arduino mode because there isn’t a screen to display text on the mBot.

These operations are included for completeness although they will not be used in this book.

Figure 37: String Operator Blocks

The join operator joins two strings together. The input slots accept strings that are type in or
variables.

The letter of operator takes a numerical value in the first slot that represents the position in the
string in the second slot. Both of these slots can take variables in addition to typed in, or literal
values.

The length of operator returns the length of the string in its input slot. The string in the input
slot can be a literal or a variable.

25

4 | The mBlock Programming Environment

The cast to string operator takes a number as its input value and returns the number as a string.
The number can be a literal or a variable.

Mod and Round Blocks

The Mod and Round Operator blocks provide the functionality for retrieving the modulo (remainder
after dividing the first variable by the second) and rounding off a number.

Figure 38: Mod and Round Operator Blocks

Additional Mathematical Operations Block

The Additional Math Operations block provides the following mathematical functions:

Figure 39: Miscellaneous Mathematical Operations Block

abs The abs function strips away the sign and returns the value as a positive number.

Example: abs(-6) = 6

floor The floor function rounds down to the lowest integer for a value.

Example: floor(1.6) = 1.0

ceiling The ceiling function rounds up to the nearest integer for a value.

Example: ceiling(1.6) = 2.0

26

sqrt The sqrt function returns the square root of a value as a double-precision floating
point number.

Example: sqrt(4) = 2.0

sin The sin function returns the sine of a value as a double-precision, floating-point
number.

Example: sin(3) = 0.052335956242944

cos The cos function returns the cosine of a value.

Example: cos(3) = 0.998629534754574

tan The tan function returns the tangent of a value.

Example: tan(3) = 0.052407779283041

asin The asin function returns the arc sine of a value.

Example: asin(.5) = 0.523599

acos The acos function returns the arc cosine of a value.

Example: acos(.5) = 1.047198

atan The tan function returns the arc tangent of a value.

Example: atan(.5) = 0.463648

ln The ln function returns the natural logarithm of a value.

Example: ln(1.5) = 0.405465

log The log function returns the logarithm of a value to the base of 10.

Example: log(1.5) = 0.176091

eˆ The eˆ function returns the value of Euler’s Number (approximately 2.718) raised to
the provided value.

Example: eˆ3 = 20.086

10ˆ The 10ˆ function returns the value of 10 raised to the exponential value provided.

Example: 10ˆ3 = 1,000

Table 3: Additional Mathematical Functions

27

4 | The mBlock Programming Environment

Robots Palette

The Robots palette houses all of the blocks that are associated with the various devices on the mBot
(including others that may be added later). Although all of the blocks are available in Scratch Mode
and Arduino Mode, you should note that in the current implementation of mBlock (3.2.2), the when
button block can only be used if you are running the program from within mBlock (Scratch Mode).
If you use this block and attempt to upload it to the mBot as part of your program you will find
that the code generator does not generate any code for it.

Why does it work in Scratch Mode? In Scratch Mode, the program is running on the computer,
not the mBot. The program is feeding commands to the mBot over the radio connect (WiFi or
Bluetooth), and the computer operating system is capable of multi-tasking and multi-threading15.
The micro-controller on the mBot cannot do multi-tasking or multi-threading so the code generator
does not bother generating any code for it.

Let’s do a quick tour of the major blocks for an ordinary mBot with no additional sensors or
motors. Figure 40 is an overhead picture of the mBot. Note that the line following sensor is mounted
on the bottom of the mBot is not shown.

Figure 40: mBot Sensors and Devices

15There are advanced techniques that are possible in the native Arduino environment, but they are not directly
available in the mBlock environment at this time.

28

Button Event Block

The button block compares the current state of the button on the front of the mBot with the desired
state (pressed, released) and returns a true or false value. The shape of the block indicates that it
can be used in control blocks, such as an if-then block.

Figure 41: Button Pressed Block

mBot Program Hat Block

The mBot Program hat block mark the beginning of a program and are required to compile and
upload a program. Currently you may use multiple mBot Program hat blocks in a single program,
but all of the code inside each of the hat blocks will be consolidated into a single setup() function
and a single loop() function. This flexibility may cause a casual reader of the program to assume
that the mBot is multi-tasking when it is not and is best avoided.

Figure 42: mBot Program Hat Block

Infrared Remote Pressed Block

The mBot comes with an infrared (IR) remote control that can be used to communicate with the
mBot. The remote sends its signals to an infrared receiver on the mBot. If the mBot is running a
program that uses these signals, it will respond accordingly.

Figure 43: mBot Infrared Remote Control

The ir remote pressed block allows the use of the infrared remote control (Figure 43) to control
the mBot. The buttons R0-R9 correspond to the numeric buttons on the remote, the letters A-F
correspond to the lettered buttons on the remote, the arrow keys correspond to the arrow keys on
the remote and the settings button corresponds to the gear button in the center of the arrow keys on
the remote. The block will report true or false if the designated button has been pressed. The shape
of the block indicates that it can be used with control blocks.

29

4 | The mBlock Programming Environment

Figure 44: Infrared Remote Button Pressed Block

Set LED Block

The set led block enables the program to turn one or both LEDs on to set the color of the LED(s).
The color codes are based on a combination of red, green, and blue (RGB) colors that provide a
range of colors from black (red=0, green=0, blue=0) to white (red=255, green=255, blue=255). Note
that to turn off the LED(s) you will need to set the color to black.

Figure 45: Set LED Block

The first parameter (defaults to led on board) will use the LEDs on the mCore board of the mBot.
The other settings (Port 1-4) in this dropdown are used if you are controlling additional LEDs that
are connected to one of the numbered ports on the mCore board. The second parameter (defaults
to all) identifies which LED is being addressed. If the parameter reads all, both LEDs will receive
the same color settings. On the mCore board there are only two addressable LEDs, so you should
normally specify either 1 or 2.

The last three parameters specify the intensity of each color for the LEDs.

What is an LED?
LED stands for Light Emitting Diode. A diode is an electronics device that allows electrical
current to flow in one direction, but blocks it if the current is going the opposite direction. An
LED is a type of diode that emits light when electrical current is passing through it in the right
direction. The mBot has several LEDs built into its circuit board. LED1 and LED2 can be
controlled from your programs if you desire.

30

Light Level Sensor Block

The light sensor block reports the light level detected by the light level sensor on top of the mCore
board. The parameter may be set to the onboard light sensor or to Port 3 or 4. The default setting
is for the onboard light level sensor. The light sensor returns values from 0-65535 where 0 is no light
and 65535 is the maximum amount of light possible.

Figure 46: Light Sensor Block

Line Follower Sensor Block

The line follower block reads the values from the line follower sensor on on the bottom of the mBot
chassis at the front. The two emitter/receiver pairs determine whether or not the line sensor is
completely over the line, off on the left, off on the right, or completely off of the line. The sensor
reports the following values:

Sensor Position Value

Both Sensors Over Line 0
Right Sensor Off Line 1
Left Sensor Off Line 2
Both Sensors Off Line 3

Table 4: Line Follower Values

Figure 47: Line Follower Block

Motor Blocks

mBlock provides two methods for controlling the motors. You can use the Run Motors block (to
control both of the motors or use the Set Motor block and specify which motor to control.

The run block’s first parameter dropdown list offers run forward, run backward, turn left, and
turn right. The motor speed can range from -255 to 255. This block will provide a tank-like turn by
using a negative speed the inner motors during a turn, effectively causing the motor to run backwards.

Figure 48: Run Block

31

4 | The mBlock Programming Environment

The set motor block allows you to specify a particular motor (M1 or M2 for the mBot) and a
speed for the motor that can range from -255 to 255. This block is especially useful when doing
car-like steering turns where the outer wheel in the turn needs to turn faster than the inner wheel.

Figure 49: Set Motor Block

Play Tone on Note Block

The play tone on note block provides a method for playing a specified tone and stopping the play of
that tone. Be aware that this is a blocking call and cannot be interrupted until its duration is over.

In earlier versions of mBlock, the play tone block did not have a duration and a wait block had
to be used in conjunction with a stop tone block to control the duration of the tone.

The available tones range from C2 to D8. These tones correspond to the same notes on a piano
keyboard. In version 3.2.2 the tone can be set to play for a pre-defined length or one can specify the
desired length in seconds by typing that value in beat parameter.

The pre-defined note lengths are:

Label Length in Milliseconds

Zero 0 ms
Eighth 125 ms
Quater (should be Quarter) 250 ms
Half 500 ms
Whole 1000 ms
Double 2000 ms

Table 5: Note Lengths

Figure 50: Play Tone Block

Stop Tone Block

The stop tone block turns off the buzzer. The current play tone on note block has a duration setting
which makes this block unnecessary and it will likely be removed in a future version.

Figure 51: Stop Tone Block

32

Ultrasonic Sensor Block

The Ultrasonic Sensor operates similar to a sonar set by sending out an inaudible ping and calculating
the distance by determining the time required for the ping to return to the sensor. The corresponding
block reports the distance in centimeters.

Figure 52: Ultrasonic Sensor Block

Timer Blocks

The mBot has a built-in hardware timer that measures the time in milliseconds from the time the
mBot is turned on.

The reset timer block causes your program to store the current value of the hardware timer in an
internal variable named lastTime. That value is divided by 1000 to convert milliseconds into seconds.

When you use the timer block to get the current time, you will get the current value of the
hardware timer less the value of the lastTime variable. These values are also converted into seconds
by dividing the value by 1000.

Figure 53: Timer Blocks

Commenting Your Code

Adding comments to your code enables you and others to understand what the code does and the
intent behind why it was written the way it was. Many times developers fall into the trap of thinking
that their code is self-documenting and therefore they should not have to comment it. While it takes
practice to write good comments and to know what to comment, the value comes when someone else
has to maintain your code (or when you come back to it after several months).

Without comments, the developer must spend extra time to understand why the code was written
in the fashion it was. Often developers come to the conclusion that it will be faster to rewrite the
code from scratch because they cannot quickly figure out what the code is doing and why it was
written in that fashion. This rework, often mistakenly called “refactoring,” comes at a cost in time
and potential new bugs. A comment in the mBlock environment is shown below.

Figure 54: Sample Comment

So what constitutes a good comment? A good comment describes the section of code and the
intent of the code. For example, a comment that says, “Add 1 to MyVar”, does not mean much and
is visually distracting because it does not communicate anything that is not obvious by looking at
the code. However, a comment that says, “Add 1 to MyVar whenever this condition occurs so that a
decision can be made when MyVar reaches this value” is much more meaningful.

In mBlock code, unless you are doing something that is very complex, it is suggested that you
have a comment that is an overview that describes what the code does as a whole and why. Add
more comments if you need to clarify a particular piece of the code.

33

4 | The mBlock Programming Environment

34

5 | Blinking LEDs

Program Description
On almost every piece of electronic equipment you will see light emitting diodes (LEDs) that will
produce one or more colors. Some act as warnings, others indicating that a switch is turned on or
off, and still others may be used together to display a message. The mBot has two LEDs, marked
LED1 and LED2 (see below) that we can control with a program.

Figure 55: LED1 and LED2 on the mBot

For our first program we will make the LEDs on the mBot blink. We shall have the mBot
alternate between turning each LED on for 1 second and off for 1 second. This program provides
an opportunity to become familiar with programming in the mBlock/Scratch environment and the
process for loading and executing the program on the mBot.

Requirements
The requirements for this program are:

1. The program will alternate blinking each LED.

2. The program shall run in a continuous loop.

3. While one LED is on the other LED must be off.

4. Each LED will be turned on for one second.

5. Both LEDs shall produce a bright red color.

35

5 | Blinking LEDs

Analysis
Looking at the requirements, we can see that the program will have to loop and alternate turning
each LED on and off in one second intervals. We can also see that the colors for the LEDs have been
specified. There is not much more to look at for this set of requirements, so let’s move on to design.

LED Color Settings

An LED is a kind of light and when you think of a light, you would usually think of it being on
and off. From a color perspective, these two states might be black and white.

However, the LEDs on the mBot can produce many colors. Every color visible to the human
eye that can be produced on the LEDs can be represented by a combination of values for red,
green, and blue. If you would like to experiment with colors, there is an excellent demo program
at this linka that will allow you to manipulate the RGB color values and see what color each
combination of values produces.

ahttp://www.zebra0.com/color/index.php

Design
Rather than just hacking out the program, let’s create a flowchart to describe our design.

Start

Turn off LED2

Turn on LED1

Wait 1 second

Turn off LED1

Turn on LED2

Wait 1 second

Figure 56: Blinking LEDs Flowchart

Looking at the flowchart, you might be thinking, "Why did the program start by turning off

36

http://www.zebra0.com/color/index.php

LED2?" This is a great question and is related to our earlier discussion about performing initialization
at the beginning of the program.

Turning off LED2 puts the LED into a known state (or value) and ensures that LED2 will be off
when we turn on LED1. Everything else appears as one might expect, except that there is no stop
block for the program.

As you can see, the line goes from the bottommost block to a point just before the first executable
step. This line indicates that the program will loop back to that point after executing the last step
in the program.

Program Code
To write our program, we need to launch the mBlock environment, which will differ depending on
your operating system (refer to the Getting Set Up section). When you have successfully launched
the mBlock environment, you should see the following on the screen:

Figure 57: mBlock IDE

37

5 | Blinking LEDs

mBlock programs are Scratch-based, so you will need to drag blocks from the various palettes
to create a program that looks like the one below. Refer to the Robots Palette in the mBlock
Programming Environment chapter if you need help locating the proper blocks.

Figure 58: Blinking LEDs Program

Now save the program by clicking on the File menu and clicking the Save Project menu item.
Save the program as BlinkingLEDs.sb2.

BE SURE TO FREQUENTLY SAVE YOUR CODE!!!

Deep Dive
Let’s take a moment to dissect this program to understand what is going on within it:

1. The first block (mBot Program) is what the Scratch language calls a hat block. All Scratch
programs (and therefore all mBlock programs) begin with a hat block.

2. The second block displayed says, “forever,” and holds a number of other blocks inside of it.
The Scratch language calls this a “C” block and it represents a looping structure. In the case
of the forever loop, it will run the statements contained within it until you reset the default
program or load another program into the mBot. Either process overwrites the memory in the
mBot, effectively erasing the old program.

3. The first block in the forever loop is a robot-specific block that sets LED2 to the off setting.
You may notice that we have settings for red, green, and blue on the set led block. Each color
can contain a value from 0-255, which will enable you to control the color displayed on the
selected LED (You can also select all of the LEDs at once by choosing all instead of a specific
LED). If all of the color values are set to zero (0), the LED will turn itself off.

4. The second block inside the forever loop sets the led block to a bright red color value for LED1.

5. The third block inside the forever loop is from the control palette and causes the program to
wait for one (1) second before continuing. As you may also have noticed, the color of the wait
block and the forever loop block are the same, implying that both come from the same palette.

6. The last three blocks essentially duplicate the first three blocks, turning off LED1, turning on
LED2, and then waiting for one (1) second. After the one (1) second wait, the program returns
to the top of the loop and begins executing the instructions in the loop again.

38

Compiling and Loading the Program
If you click the mBot Program block, mBlock will open the compile and load window. Clicking the
Upload to Arduino button will compile and load the program to the mCore board on the robot (see
below).

Figure 59: Ready to Compile and Load Program

After the program has been compiled and loaded into the mBot, the mBot will automatically run
the program directly on the mBot. While this is not a problem for programs that do not involve
any movement, it might be a good idea to think about ways to prevent the mBot from immediately
executing movement after a program is uploaded to avoid your mBot running off of a table top!

It is also possible to run the program from within the mBlock IDE should you so desire. However,
be warned that anything relying on timing accuracy will be affected by the time it takes to send and
receive messages over the air.

Timing and Over-the-Air Delays

Everything takes time. When you run a program on the mBot, the microprocessor executes
the program as fast as it can, ensuring that the mBot can respond to each statement in the
program as quickly as possible. When you are running the program from the mBlock IDE, you
must establish a radio connection to the mBot via 2.4GHz WiFi or Bluetooth. This connection
allows mBlock to send each command to the mBot. This approach also allows the use of all of
the Scratch blocks.

So why would one bother to write mBot programs that get uploaded to the mBot instead of
running everything from the mBlock IDE on the computer? While the computer will certainly
be many times more powerful than the mBot’s microprocessor, it takes time to send commands
and receive responses when using a radio connection. During this time, often called lag time,
the microprocessor on the mBot will continue to execute the program instruction. In some cases,
this may pose a problem because sensor readings that control movement and other operations
may change rapidly enough that the data is out of date before it reaches the computer.

Imagine trying to drive a Mars Rover and keep it from driving over a cliff. The lag time for

39

5 | Blinking LEDs

a radio signal going from the Earth to Mars ranges from 4 minutes to 24 minutesa. As you can
imagine, a lot can happen to the Mars Rover in that time! Fortunately, our lag times are much
lower because the computer is much nearer the mBot. However, you will see some lag time issues
when trying to achieve accurate movements or sensor readings from within the mBlock IDE.

ahttp://blogs.esa.int/mex/2012/08/05/time-delay-between-mars-and-earth/

Testing and Validation
Now we come to what is arguably one of the most important part of programming (besides designing
and writing the code), testing the program to ensure that it works as we expect.

Test Procedure

1. Observe the LEDs on the mBot.

2. Is LED1 on while LED2 is off?

3. Is LED2 on while LED1 is off?

4. Is there a pause between the LEDs turning on and off?

If your mBot meets all of the criteria in your test procedure, you have correctly fulfilled all of the
requirements for the program. Congratulations!

Your program has been uploaded to the mBot, so you can run it even if the mBot is not
connected to the computer by the USB cable. To try this out, turn off your mBot, unplug the
USB cable, and turn on the mBot. Your program should still continue to make the LEDs blink.

If you want to return the mBot to its factory shipped state, click on the Connect menu item
and click the Upgrade Firmware menu item followed by clicking the Reset Default Program
menu item. At this point, your mBot is completely restored to its factory settings.

Why would you want to do this? Sometimes it’s necessary to ensure that all of the mBot’s
memory gets flushed out so that there are no traces of older programs laying around to cause
problems. If your program is acting up, you can often get it to behave by performing the
flush cycle mentioned above. After doing so, reload your program to the mBot and see if that
straightens things out.

Troubleshooting and Debugging
But what if the lights don’t blink? In this case, you will need to troubleshoot and debug so let’s look
at what might have potentially gone wrong (and don’t worry, troubleshooting and debugging are not
only normal occurrences but in fact are valuable skills to build). We’ll start by narrowing down the
potential points of failure into a checklist and work through each of them.

1. The mBlock IDE was not connected to the mBot and the upload failed

a) Is the cable is connected to the mBot and the computer?
b) Did you click the Connect menu item and choose the correct serial port?

2. The mBlock IDE cannot connect to the mBot

a) Is the mBot turned on?
b) Have you upgraded the firmware on the mBot from the Connect menu item?

40

http://blogs.esa.int/mex/2012/08/05/time-delay-between-mars-and-earth/

c) Did you install the Arduino driver for the mBot?

3. There is an error in the program.

a) Did you check that your program matches the one in Figure 58?

While it is not possible to anticipate all of the possible errors that might occur, the ones above
are the most commonly encountered issues. Hopefully you will not encounter any of the connectivity
issues, but if one of them occurs you will be building a skill that will help you debug your setup in
the future.

Challenges
Each of the following challenges requires you to change the basic program to achieve the stated
behavior. Feel free to experiment with other combinations.

1. Try to change the color of both LEDs to a different color.

2. Try to change the color of each of the LEDs to a different color.

3. Try to change the sequence of the LEDs to blink LED1 two times before blinking LED2.

4. In the Morse Code, a sequence of three short flashes, followed by a sequence of three long
flashes, followed by a sequence of three short flashes sends an SOS message. Can you write a
program to send a visual SOS message?

41

5 | Blinking LEDs

42

6 | Play an Octave

Program Description
The use of sound in devices is universal. Think about your personal devices, such as cell phones or
gaming handsets. They all use a variety of sounds for notification or as part of a game to improve
the experience. The mBot has a built-in buzzer that can play different tones, so with that in mind,
let’s have the mBot make some noise!

This program will play sounds using the built-in speaker on the mBot. The built-in speaker has
the capability to play notes from B0 to D8 (see Figure 6016), a total of slightly over 6 octaves. This
range allows the robot to play different tunes in response to different events if you like. It can even
play simple songs!

1

2

3

4

5

6

7

0 8

Figure 60: Piano Keyboard Octaves

Interesting Math Fact

Did you know that you could calculate the frequency of any note on a piano keyboard? The
formula for the calculation is:

f(n) = 2(n−49
12) × 440Hz

Requirements
The requirements for this program are:

1. Play an eight-note scale from C4 to C5.

2. Each note shall be a quarter note.

16https://en.wikipedia.org/wiki/File:Piano_Frequencies.svg

43

https://en.wikipedia.org/wiki/File:Piano_Frequencies.svg

6 | Play an Octave

Analysis
Although there is a formula for calculating frequencies for notes, we can use the pre-calculated
frequencies in the table in Appendix D: Musical Notes. Why would we choose to use a pre-calculated
table instead of calculating the frequency every time, you might ask. The rationale is that if the
result of a particular calculation will not change, then the program should perform that calculation
once and save the result to reuse because it will be faster than making the same calculation for the
same result every time. As with everything there are always trade-offs. If memory is extremely
limited, it might be better to do the calculation every time.

Fortunately, the team at Makeblock has pre-defined those values for you so you will not have to
go through that extra work. You can verify the frequencies by going to Wikipedia17 if you like.

Design
The most obvious approach to writing the program would be to put in a series of play tone blocks
with a 0.25-second duration for each of the play blocks as shown below. This design will certainly
fulfill the requirements, but it requires the implementor to pay attention to the duration for each
block that plays a note.

Start

Play Note C4

for .25 seconds

Play Note D4

for .25 seconds

StopA

A

Play Note F4

for .25 seconds

Play Note A4

for .25 seconds

Play Note E4

for .25 seconds

Play Note G4

for .25 seconds

Play Note B4

for .25 seconds

Play Note C4

for .25 seconds

Figure 61: Play an Octave - Initial Design

Note the circles with letters in them. You may have already guessed that these circles designate
a continuation of the program flow on the same page. In flowcharting terms, these are referred to as
on-page connectors and they are used to allow a flowchart to be extended horizontally (or to other
points in the diagram on the same page). There are also off-page connectors that are shaped like an
upside-down house (pentagon) that work in the same fashion as on-page connectors except that they
point to portions of the diagram that might be on a different physical page.

17https://en.wikipedia.org/wiki/Piano_key_frequencies

44

https://en.wikipedia.org/wiki/Piano_key_frequencies

As you can likely also imagine, this approach to programming is not very flexible and would be
prone to errors if the implementor is not paying close attention to the duration of the note. So how
do we get around this problem? The first step would be to see where we are duplicating code and
isolate that into its own custom block. So we will do that first.

Figure 62: Play Octave - First Design Revision

As you can see, we’ve isolated the parts that repeat (Playing the note for .25 seconds) into a
custom block (also called a function or method) named Play that takes a Note as a parameter. This
step makes it possible to modify the Play block in the future should we want to also send in a specific
duration for the note. This step will also helps improve the readability of the code by hiding the
unimportant details, in this case the duration, in the custom Play block.

Why Not Use A List?

You might be thinking, "Hey, mBlock lets me make lists so why aren’t we using a list for the
notes?" This is a very reasonable thought, but unfortunately the mBlock code generator does
not support lists although you can certainly use lists if you are running your program through
mBlock rather than uploading it to the mBot.

The actual implementation of a list in Scratch appears to be that of a linked list although it
acts like a dynamic array within mBlock. Creating and managing this data structure in the code
generator would be a relatively trivial task because linked lists are well-known data structures
with well-tested implementations.

So why would the code generator not support generating a list? I can’t speak for the
Makeblock team, but I suspect it has to do with hardware memory constraints on the mBota.
The mBot has 32 kilobytes of program memory (called PROGMEM) but only 2 kilobytes
of variable memory (called SRAM) and the global variables used by the Makeblock libraries
consume a bit under half of the available SRAM. This being the case, every byte used counts
and a frequent cause of program crashes in this type of environment have to do with running
out of memory.

45

6 | Play an Octave

Instead of having the risk of a continuously expanding list causing program failure, I believe
the choice was made to forgo lists unless one is working in the Arduino programming environment.
At that point, the developer is assumed to be responsible for memory management. With the
STEM focus of the mBot, I believe that the developers chose to err on the side of caution so
that younger children would not become frustrated or discouraged.

In volume 2 we will be working exclusively in the Arduino programming environment. This
approach will provide you with much more flexibility in what you do and how you do it.

aThese constraints occur because the mBot is based on the Arduino Uno which has the same hardware
limitations

Program Code
One of the first things we need to do is to create our custom block, so let’s do that first. To do that
in mBlock, we need to click on the Data&Blocks palette followed by clicking on the Make a Block
button. You should see a dialog like the one below:

Figure 63: Make a Custom Block Dialog

In the purple area, type: Play

Figure 64: Set Custom Block Name

46

Now, click the triangle by Options to show the options for the block. You’ll see a dialog like the
one below:

Figure 65: Make a Custom Block Options Dialog

Note that each type of input has a shape. If you inspect the shapes on the various palettes, you
will see that they use the same shapes to indicate the type of input that is expected.

We need to add an input, but what type of input should we use, a number or a string? You might
think that if the note is named C4 then the input should be a string. However, that is not the case.
The C4 is merely the name associated with the note, not the actual note (which is a number). Add a
number input and name it Note.

Figure 66: Play Tone Block with Note Parameter

You should see a hat block that appears on the screen that looks like the one below.

Figure 67: Custom Play Tone Hat Block

Now let’s add the rest of the blocks to our custom block. First, click on the Robots palette and

47

6 | Play an Octave

drag over a block that matches Figure 68 under our custom Play [note] hat block until it “attaches”
underneath the hat block.

Figure 68: Play Tone On Note Block

Click and drag the purple Note from the hat block and drop it into the oval on the play tone on
note block that says C4. We’ll also change the beat from Half to “Quater18”.

Figure 69: Play Tone Block with Quarter Note Added

Figure 70: Final Play Tone Block with Comment

At this point, you should also see a block under the Make A Block button that you will use in
your programs. It will look like Figure 71:

Figure 71: Custom Play Tone Block in Data & Blocks Palette

Drag the custom block from the palette to just under the mBot Program hat block and put the
string C4 in as the parameter. You should have noticed that you cannot put a string into the custom
block. Remember that we defined the input as number, not a string (note the rounded shape of the
input variable on the custom block).

We can look up the numbers associated with the tones (see Appendix D: Musical Note Values)
and manually add them, but then how would you know what tone was by looking at the numbers?
You could add comments by right-clicking each block but that would rapidly get very messy. A
better way is to assign the values to our own variables.

18There is currently a misspelling in the library for which a correction with the correct spelling has been requested.

48

Variables To The Rescue
Variables are named holding places for values. The values can be strings, numbers, or boolean
(true/false, yes/no)19. The use of well-named variables makes your programs much easier to read
and maintain.

They also make your program easier to modify because you can declare them once and use them
all over your program. If you decide you need to change the value of a variable, then you only need
to change it in one place, rather than trying to find the values all over your code.

Making Variables
Our application only uses eight notes, so we will create eight variables (C4, D4, E4, F4, G4, A4, B4,
C5) to hold the values for the notes. To create a variable, click on the Data&Blocks palette, then
click on the Make a Variable button. You will see a dialog pop up that looks like the one below:

Figure 72: Make a Variable Dialog

Leave the For all sprites radio button set, and enter the note name C4 and click the OK button.
Do this for all eight notes. When you have finished, the palette under the Make a Variable button
should look like figure below:

Figure 73: Data&Blocks Palette After Adding All Note Variables

19Currently mBlock code generation only supports variables of the double-precision floating point type.

49

6 | Play an Octave

You will also see the following blocks appear below the variables.

Figure 74: Variable Method Blocks

Drag the C4 variable over to the Play input slot, and now try to compile and upload the program
again.

NOTE: You must drag the variable into the Play block input. If you try to type in C4, you will
find that you cannot because the slot is expecting a numeric value and C4 is a string. When you
declare variables you should use them rather than trying to type in the variable name because
mBlock (Scratch) will automatically assign a reference to the variable. If you type in the name
of the variable, you are only typing in a literal string which mBlock will use. This is a frequent
source of errors for new mBlock and Scratch programmers. In this example, we have taken
advantage of the type of input slot (numeric) to prevent the programmer from accidentally
entering any other type of value.

In other languages, this is referred to as static typing. Static typing will allow the compiler
to check that you have used the correct type of variable based on how it has been declared
(numeric, string, etc.) and will display an error if you have used the wrong type of variable data.

Figure 75: Play a Single Note with the Play Block

What? It did not play a tone? Why not? You have declared the variable C4, but you did not
assign a value to it so it will have whatever happens to be in that piece of memory, which may or
may not be a playable note.

Let’s set the value for C4 to 262 and see if that makes a difference. Click on the Data & Blocks
palette, and drag the set block to be directly under the mBot Program block and before the Play
block:

Figure 76: Setting the Value of the Note

50

Now compile and upload the program to the mBot. You should hear two beeps of the same
tone. Why two? On loading, the mBot (due to its Arduino background) has a delay before it starts
running a new program and may run part of a previous program before completing the setup loop.
Subsequent runs should not experience two beeps. To try this, press the reset button towards the
back of the mCore board on the mBot. This has the effect of resetting the board and running the
last program. You should only hear one beep at this point.

Add the rest of the variables using the values in the table below:

Note Value Note Value
C4 262 G4 392
D4 294 A4 440
E4 330 B4 494
F4 349 C5 523

Table 6: Note Values for the Play Octave Program

After you have added the variables, we are ready to write our program logic!

Program Logic
We are finally read to write our main program logic. The program shown below uses our custom
play block.

Figure 77: Play Octave Main Program Logic

51

6 | Play an Octave

Now, compile and upload and let’s see if it works.

You should note that the compile did not successfully complete due to an error. Look at the
compile window and you should see the message below:

1 -27 12:52: Process exited with 1
1 -27 12:52:14.790 > project _P_a_Oc_a__20_3.ino.cpp :17:8:

error : conflicting declaration ‘double A4 ’\\

It was mentioned earlier that the Makeblock libraries declare some global variables. This is an
example of one such conflict with a global, read-only variable. The easy fix is to rename our note
variables to use a prefix of Note_ (note the underscore after the word Note). Right click on each of
the variables and add the prefix. Your program should now compile, load, and execute correctly:

Figure 78: Corrected Play Octave Main Logic

Now that the program compiles correctly, we should think about a couple of other small items,
namely readability. In the corrected program above we call a lot of initialization methods and a lot
of play methods.

Let’s neaten up the main logic a bit by creating a couple of other custom blocks. Create a block
named Initialization (don’t use setup, that’s already used by the code generator) and drag all of the
set methods under it.

52

Figure 79: Play Octave Initialization Block

Drag the Initialization code block under the mBot Program block.

Figure 80: Play Octave Main Logic with Initialization Block

53

6 | Play an Octave

As a final cleanup for readability, create another block named PlayOctave and drag all of the
play blocks under it.

Figure 81: PlayOctave Block

Drag the PlayOctave block into the mBot Program under the Initialization block.

Figure 82: Final Main Logic

Keeping things DRY

The notion of isolating duplicated code into its own block (called a method or function in other
languages) is referred to as the DRY (Don’t Repeat Yourself) principal and is considered a best
coding practice in all languages. Duplicated code makes it harder to modify a program because
the developer must look through all of the code and hope that nothing is missed. This type
of isolation makes it easier to modify programs and reduces the number of places where the
developer has to look when debugging an error.

You might also want to add comments to the blocks so that it will be obvious what each one
does. On a small program like this, it’s optional but on larger programs you will want the added
documentation to help yourself and others understand the intent of the blocks.

Although there continues to be a debate around the value of comments in source code, the author
considers it a best practice in all programming languages that support comments (see Figure 83 on
the next page) to ensure that the intent of the code is well-communicated.

54

Figure 83: Final Version of Play Octave Program

Although creating the Play block is a bit contrived (because Play Tone on [Note] Beat [Quarter]
could simply be inserted in the PlayOctave block), the purpose of creating the Play block was
demonstrate how to create a block that takes an input parameter and to act as a starting point for
one of the challenges at the end of the chapter.

Readability is also improved a bit because it is immediately obvious what PlayOctave is doing
without needing to worry about the note durations. By hiding the implementation of Play Tone, we
can now change the duration of the note in a single place rather than across several statements just
as we only need to change the frequency of a note in a single place.

It is generally considered a best practice to minimize the number of locations where a value needs
to be changed. Typically this will be accomplished through the use of variables in some kind of
initialize block. This practice helps eliminate software bugs that would occur if you needed to change
a value in several places in the code and missed one or more of those places.

Testing & Validation
Testing Procedure

1. Run the program

2. Do you hear the familiar ‘do-re-mi-fa-sol-la-ti-do’ scale?

If you hear the full eight notes, congratulations! If you do not, then you will need to troubleshoot
and debug the program.

Troubleshooting and Debugging
But what if the program does not play any notes? Let’s narrow down the potential points of failure
into a checklist and work through them.

55

6 | Play an Octave

1. The mBlock IDE is not connected to the mBot

a) Is the cable is connected to the mBot and the computer?
b) Did you click the Connect menu item and choose the correct serial port?

2. The mBlock IDE cannot connect to the mBot

a) Is the mBot turned on?
b) Have you upgraded the firmware on the mBot from the Connect menu item?
c) Did you install the Arduino driver for the mBot?

3. There is an error in the program.

a) Did you create the variables correctly?
b) Did you initialize the variables?
c) Did you check that your program matches the one in Figure 83?

Challenges
Each of the following challenges requires you to change the basic program to achieve the stated
behavior. Feel free to experiment with other combinations.

1. Modify the Play block to take a duration so that you can control the note played and the
duration.

2. Work out the notes for a simple melody and modify the program to play the melody.

3. Modify the program to flash the LEDs when a note is played. You can be as creative with this
as you like.

56

7 | Press the Button

Program Description
So far we have looked at LEDs and making sounds, but none of this involves any user interaction
with the mBot. If you look at the front part of the mBot circuit board, you will see a push button.
This type of push button is a normally-open momentary contact button and is often used to signal
the mBot to do something.

Figure 84: mBot Push Button

Electronic Switches
A switch is used to control the flow of electricity through a circuit. When a switch is closed, or
in the on position, electricity can flow through the circuit. When the switch is in the open, or
off position, the flow of electricity is interrupted. There are many types of switches, such as the
ones on your wall that control the lights or the tiny pushbuttons on the mBot.

The mBot’s green pushbutton is referred to as being normally-open due to the default
position for the switch being open, or off. It is also a momentary contact switch because the
switch is only closed, or on, while your finger holds it down. Electricity can only flow through
the circuit when the button is pressed.

There are also normally-closed momentary contact buttons that do the opposite, i.e., the
circuit is closed with electricity flowing through it until the button is pressed, interrupting the
flow of electricity through the circuit. Both types of buttons have their uses, but it is important
to know which type you are using!

The goal of this program is to wait until a the button is pressed and then to play a tune. We can
reuse all of the Play Octave program and make a few minor changes. You can save a lot of time by
recognizing what pieces of earlier programs are reusable. This practice will enable you to reuse your
analysis and designs as well as your code. Ultimately developers strive to make as much of their
work as reusable as possible for exactly this reason.

57

7 | Press the Button

Requirements
The requirements for this program are:

1. The program should wait for the push button to be pressed.

2. When the button is pressed, play the following sequence of notes:

E4 D4 C4 D4 E4 E4 E4 R D4 D4 D4 R E4 G4 G4

The R represents a rest, or pause, in the melody.

Analysis
Having already written a program that plays a list of notes, the only differences we see are the
addition of the “R” to indicate a rest, or pause, and the need to wait for the push button to be
pressed to start playing the melody. So let’s move on to design.

Design

Figure 85: Press the Button Flowchart

Although a different sequence of notes are used, this program design is essentially the same as the
Play Octave program from the last chapter. A loop has been inserted that will wait until the button
on the front of the mBot is pressed. Like the Play Octave program, the work of playing a note and
the melody are isolated into their own custom blocks.

As you may have seen, the decision block that follows the Initialization block has two arrows, one
indicating the path if the decision is no and another one that indicates the path if the decision is yes.
The circular objects, are on-page connectors that enable us to keep the diagram concise.

58

Program Code

Figure 86: Press the Button Main Logic

The main logic differs from the Play Octave program with the addition of the wait until block that
uses the button reporter block to determine whether or not the button has been pressed. It is a quite
common practice to evolve an existing program’s capabilities through the addition of small bits of
code.

Agile processa practitioners generally structure their work to introduce small changes and use
automated testing to ensure that the new functionality works as expected and to verify that the
additions have not caused existing functionality to stop working.

ahttps://en.wikipedia.org/wiki/Agile_software_development

The Play block accepts a value and determines whether or not the value is note (greater than
zero) or a rest (equal to zero). The if-then statement controls whether a note is played or if a wait
equal to the duration of a quarter note occurs.

Figure 87: Press the Button Play Block

59

https://en.wikipedia.org/wiki/Agile_software_development

7 | Press the Button

The other section of the code that might be of interest is the Initialization block. As you can see
in the figure below, we don’t need to define many notes for the melody. However, we are assigning a
value of zero to the Rest variable so that no note will be played.

Figure 88: Press the Button Initialization Block

Final Program

Below is a solution for the Press the Button program. Although the code is pretty well self-
documenting, adding the comments is more about building the habit of commenting your code.

Figure 89: Press the Button Final Program

60

Testing & Validation
Testing Procedure

1. Press the green button on the robot and you should hear a familiar melody.

2. Does the mBot wait to play the melody until the button is pressed?

3. Does the melody play after the button is pressed?

If your program fulfills all of the test conditions, it has passed. Congratulations!

Troubleshooting & Debugging
Let’s look at what might have potentially gone wrong by narrowing down the potential points of
failure into a checklist and work through them.

1. The mBlock IDE is not connected to the mBot

(a) Is the cable is connected to the mBot and the computer?
(b) Did you click the Connect menu item and choose the correct serial port?

2. The mBlock IDE cannot connect to the mBot

(a) Is the mBot turned on?
(b) Have you upgraded the firmware on the mBot from the Connect menu item?
(c) Did you install the Arduino driver for the mBot?

3. There is an error in the program.

(a) Did you create the list correctly?
(b) Did you create the variables correctly?
(c) Did you check that your program matches the one in Figure 89?

Challenges
Try to modify the program to make it do the following:

1. Make the program continue (loop) to play the melody after the button is pressed.

2. Make the program continuously play the melody after the first button press and stop at the
next button press.

61

7 | Press the Button

62

8 | Light It Up!

Program Description
Have you ever had the power go out at your home? Some people have blackout alarms that make a
sound when power is lost, so let’s write a program that has the mBot do the same thing.

The mBot has a light level sensor on the top of the circuit board that can be used to measure the
level of available light around the robot. This sensor can also be used to trigger the robot to perform
an action when the light rises above or falls below a user-specified level.

Figure 90: mBot Light Level Sensor

Requirements
This program will act as a black-out alarm. The program shall:

1. Measure the available light.

2. Make a sound when the current light level drops 20% below the normal light level.

3. Turn off the sound when the light level rises above the low-light threshold.

Analysis
The light sensor measures light and returns a value in the range of 0 - 1024. Light levels vary, so the
program will need to take an initial measurement to determine the light level that will be used.

Due to the normal variances in light level measurements, it is a good practice to take several
samples and then use the arithmetic mean. For example, if the mean of the readings is 480 the
deviation for what triggers the speaker to turn on might be -10% of the mean, i.e., a measurement of
432.

At the rate that the light sensor updates its values, it is likely a good idea to measure the light
intensity at a designated interval, such as 1 second.

63

8 | Light It Up!

Design

The design of the program accounts for the need to collect light level samples and determine the
arithmetic mean for a “standard” light level by using a loop at the beginning of the program. All
values are added to the Accumulator and then divided by 10 to calculate the arithmetic mean. From
this point the light threshold is calculated and the program enters an endless loop where it reads the
current light intensity and compares it against the threshold value to determine whether or not to
make a sound.

You will note that there is no Stop block in the program because the results of the final If-Then
blocks are to route the program back up to read the light sensor again in a ‘forever’ loop that you
must break out of manually by turning off the robot or resetting the default program.

Figure 91: Light It Up! Flowchart

What Goes Where?
When the mBlock code generator generates the Arduino code, anything within the forever block
goes into the loop() statement and will run forever. Anything that does not appear within a
“forever” loop will appear in the setup() method.

64

Program Code
As we look at the flowchart, we can see that we have a bit to do in the Initialization block to get all of
our measurements gathered and set up the program variables. We set the threshold to 80% (100% -
20%) of the arithmetic mean that represents the “normal” light level. Should the requirement change
from 20% to some other number, we can change it in a single spot where the calculation occurs. You
could also set up a dedicated variable for the percentage should you desire to make the program
more self-documenting.

Figure 92: Light It Up! Initialization block

Let’s move on to the heart of the program, the CheckForBlackout custom block. First we set the
LightIntensity variable to the current reading from the light sensor on the mBot. The comparison of
that value to the light threshold we calculated in the Initialization block determines whether or not
we have the mBot make a sound.

Figure 93: Light It Up! CheckForBlackout block

Could all of this code be in the main program rather than in custom blocks? Of course, but by
isolating the code into a couple of custom blocks we can make the main program code very short,
but extremely readable. This quality of readability is one that you should strive for in all of your
programs. It will ensure that you or anyone else looking at your program will grasp what is being
done, especially when you come back to your program several weeks or months later.

65

8 | Light It Up!

As you can see, our main program is extremely short, but it is immediately obvious what the
program does.

Figure 94: Light It Up! Main Program

Elegant Simplicity

When I was a junior programmer one of my mentors constantly urged us to write code that
was elegantly simple. His definition of elegant simplicity centered on breaking the problem into
smaller chunks of code that did one thing well and then stringing those chunks together with
a small “main” program. This approach enabled us to solve each problem and test it before
moving on to the next one, knowing that the foundation we were building on was solid.

In retrospect, this was a predecessor to practices currently associated with the Agile develop-
ment process. You will develop your own development style over time, but I would urge you to
keep the idea of “elegant simplicity” in mind as you do so.

Testing & Validation
You will need to test your program with several different light levels to determine whether or not the
program is working as intended.

Testing Procedure
1. In a brightly lit room, turn on the mBot.

2. Cover the light sensor with your hand or something else that will drop the light level.

3. In a less brightly lit room, repeat the procedure above.

If the mBot makes a sound when the light levels drop, you have succeeded in making a blackout
alarm. Congratulations!

Troubleshooting & Debugging
Let’s look at what might have potentially gone wrong by narrowing down the potential points of
failure into a checklist and work through them.

1. The mBlock IDE is not connected to the mBot

(a) Is the cable is connected to the mBot and the computer?
(b) Did you click the Connect menu item and choose the correct serial port?

2. The mBlock IDE cannot connect to the mBot

66

(a) Is the mBot turned on?
(b) Have you upgraded the firmware on the mBot from the Connect menu item?
(c) Did you install the Arduino driver for the mBot?

3. There is an error in the program.

(a) Did you create the variables correctly?
(b) Did you initialize the Counter variable to zero?
(c) Did you use the proper comparison operator?
(d) Did you check that your program matches the ones in Figures 92-94?

Challenge
Modify the program to make it react to a 10% increase in the light level from the normal light level
with a different tone than the one used for a decrease in light level.

Things to Ponder
1. If you modified the program to turn on the LEDs when the light level was low what would you

expect to happen? How would you work around what happens?

2. Do you think you would get a different effect if the color of the light was different than white?

67

8 | Light It Up!

68

9 | Ultrasonic Theremin

Program Description
The mBot has an ultrasonic sensor mounted on the front that looks like eyes. This sensor operates
by sending out an ultrasonic signal from one of the eyes and receiving the reflection of the signal
in the other eye. This signal is too high for humans to hear, but some animals, such as dogs, have
hearing that is sensitive enough to hear some ultrasonic signals. When in operation, the ultrasonic
sensor operates in the same fashion as the sonar (SOund NAvigation and Ranging) on a submarine
or surface vessel.

Figure 95: mBot Ultrasonic Sensor

Generally speaking, ultrasonic sensors are used for a number of different purposes, such as range
finding, navigation, etc., but we shall create our own musical instrument, called a theremin, to
experiment with the ultrasonic sensor. A theremin is an electronic musical instrument that plays
different notes based on the proximity of a hand or other object. We will use the ultrasonic sensor
to detect the range in front and play notes based on the distance and change them based on a how
close the object is to the ultrasonic sensor.

Requirements
Our ultrasonic theremin has the following requirements:

1. The robot shall begin playing a tone when it detects something within a range of 15-50cm.

2. The robot shall stop playing a tone if the object is less than 15 centimeters away or more than
50 centimeters away.

3. The robot shall play a maximum of one octave (8 notes, C D E F G A B C) based on an equal
spacing over the 15-50cm range.

69

9 | Ultrasonic Theremin

4. The highest note should be played at 15 cm.

5. The lowest note should be played at 50 cm.

Analysis
Having already discussed how the ultrasonic sensor works, we can focus on solving the problems
associated with creating the theremin. The first item is to determine the physical spacing between
note changes so that we can set up tests to change notes according to the requirements.

From that point, we need to know when to turn off the buzzer on the robot when the object is
outside of the specified range of distances. The ultrasonic sensor measures distances in centimeters
so if you want to use inches, you’ll have to do a conversion by multiplying the number of centimeters
by 0.3937 to get the number of inches. Likewise, to convert from inches to centimeters requires that
you multiply inches by 2.54 to get the number of centimeters.

The first task will be to determine the interval values that we will use to change our note values.
Due to the way the ultrasonic sensor reads data, we can use 15cm as our lower bound to trigger the
highest note but we will need to add a cushion of 6-10cm to our upper bound to ensure that the
lowest note gets played. Otherwise, the speaker will turn off immediately after it hits anything above
the threshold number. Finding a good cushion is usually accomplished by adding one and a half
additional steps (58), but often some experimentation is required to get a consistently good number.

Our next challenge will be to calculate the index into a list of notes. There is no truncation block
in mBlock (or Scratch), so we will need to do this in a different fashion using the modulo operator.
The modulus of a division contains the remainder and the modulo operator returns the remainder of
a division. We will use the following steps to calculate the index:

1. Subtract the minimum value from the range to scale the range down to the values we are
interested in.

2. Use the mod operator to get the remainder from dividing the range by the number of intervals.

3. Subtract the remainder from the range.

4. Perform the division to get the index.

The actual formulas would look like:

Normalized Range = Current Range - Minimum Range

Note Index = (Normalized Range - (Normalized Range mod Interval)) / Interval

So let’s see how all of this math works out in a couple of examples. First off, we know that
our range is from 15-50cm and that we are working in 5cm intervals. Let’s also assume that the
ultrasonic sensor returns a value of 15.72cm.

Our first step will be to normalize the range by subtracting the low end of the range from the
high end.

50 cm - 15 cm = 35 cm

Now that we have a normalized range, we need to account for any fractional values because the
ultrasonic sensor returns a measurement with decimals. We can use the mod operator to determine
what the decimal portion is and subtract it out.

15.72 - (15.72 mod 5) = 15.72 - 0.72 = 15

70

At this point, we only need to divide the decimal-less range by the interval to get a number representing
the note based on the range.

15 / 5 = 3

Isn’t mathematics awesome? Because we only perform our calculation on numbers that we know
are in the range we are looking for, we can be fairly certain that we will get a valid index number
from our calculation.

Design
The flowchart below illustrates the principal operations that need to occur in the program.

Figure 96: Ultrasonic Theremin Flowchart

You should note that there is not a Stop terminal symbol in the flowchart because we want the
program to continue looping. This is the same technique that we used in the Chapter 5: Blinking
LEDs and the Chapter 8: Light It Up! programs.

71

9 | Ultrasonic Theremin

Program Code
We will look at the code section by section to ensure that the code and reasoning behind the code
is well understood. The first section is the initialization block which contains the familiar task of
setting up variables with values that represent the notes of the octave. These blocks are followed by
a set of blocks that sets the minimum range (MinRange) and the maximum range, MaxRange as well
as the length of the measurement intervals, Interval.

Figure 97: Ultrasonic Theremin Initialization Block

72

The Play block is relatively straightforward as well, although you should note that we initialize
the Tone to zero at the beginning of the block to ensure that it has a known value that we can test
against at the bottom of the block. The if-then statement merely tests to see whether or not a valid
tone has been selected and plays it if one has.

Figure 98: Ultrasonic Theremin Play Block

An alternate implementation would be to simply play the selected note in each of the if-then tests
rather than just assign a note to be played at the end. If you choose to implement in this fashion
you can eliminate the Tone variable, its set block at the top of the block, and the if-then test at the
end of the block.

Either approach works and as a general rule is more of a matter of personal taste (unless you
are tight for variable space at which point you should use the alternate approach to avoid having to
create an extra variable). Finally we arrive at the main program logic.

73

9 | Ultrasonic Theremin

Figure 99: Ultrasonic Theremin Main Program Logic

The value of the ultrasonic sensor is read into the variable Range which is then tested to see if it
falls within the legal values we have defined for the minimum and maximum range.

It is necessary store the value in the range variable because we are making two comparisons
against the same value. If we were only making a single comparison we would not necessarily need
the Range variable.

The if-then test has a number of embedded logical functions that may not be easily read from
Figure 99. Keeping in mind that each logical operator may be assumed to be surrounded by
parentheses, the test condition would read:

if ((not(Range < MinRange)) and (not(Range > MaxRange))) then

Nested Operators

When constructing nested operators, it may be easier to work from the inside out, i.e., do the
innermost operations, then drag them into containing operations. To illustrate:

1. Create the expression (Range < MinRange)

2. Drag this expression into its own not block

3. Drag the not block into the left-hand side of an and block.

4. Create the expression (Range > MaxRange)

5. Drag this expression into its own not block

6. Drag the not block into the right-hand side of an and block.

7. Drag the and block into the if-then statement.

Having determined that the Range variable is inside of our specified continuum of values, it is
time to perform the scaling operation followed by determining which note needs to be played. The
final step in the if-then test is to actually play the note with our custom block.

74

Testing & Validation
It is now time to run the program and see whether or not it performs as expected. It is recommended
that you have a tape measure or some other measuring device to determine whether or not the notes
are being played at the expected distances from the ultrasonic sensor.

It is also recommended that you use a flat surface (called a reflector), such as a book, to ensure
that the sensor has no issues with ultrasonic signals being absorbed. The flat surface will also let you
see where on the tape measure the notes are changing.

Test Procedure

1. Test every 5cm beginning at 15cm in front of the mBot to see if a tone is played.

2. Test that no note is played if the reflector is below the minimum range.

3. Test that no note is played if the reflector is above the maximum range.

If your program does all of these, you have successfully the assignment. Congratulations!

Troubleshooting & Debugging
Let’s look at what might have potentially gone wrong by narrowing down the potential points of
failure into a checklist and work through them.

1. The mBlock IDE is not connected to the mBot

(a) Is the cable is connected to the mBot and the computer?

(b) Did you click the Connect menu item and choose the correct serial port?

2. The mBlock IDE cannot connect to the mBot

(a) Is the mBot turned on?

(b) Have you upgraded the firmware on the mBot from the Connect menu item?

(c) Did you install the Arduino driver for the mBot?

3. There is an error in the program.

(a) Did you create the variables correctly?

(b) Did you initialize all of the variables?

(c) Did you use the proper comparison operator?

(d) Did you select the correct port for the Ultrasonic Sensor?

(e) Did you check that your program matches the one in Figures 97 - 99?

75

9 | Ultrasonic Theremin

Challenges
Modify the program to make it do the following:

1. Change the interval and the min/max values to find a length of scale that works best for you.

2. Find the frequencies for the accidentals (sharps/flats) and add them for more complex melodies.

3. Use the LEDs to change colors with each different note.

Things to Ponder
The program demonstrates one method of creating an electronic musical instrument. Are there other
applications that you can think of that would use a change in sound based on the distance from an
object?

76

10 | Baby You Can Drive My Bot

Program Description
You have likely seen or heard about robotic competitions where the participants drive their robots via
a remote control. As mentioned in the preface, tele-operated vehicles do meet the definition of a robot,
i.e., they are not autonomous. The real value of a robot is realized when it can operate autonomously
without the need for human supervision. It is, however, quite common to use a remote control to
experiment with movement and in some cases to train a robot to be able to make movements using
some sort of operator harness.

This will be our first program to make the mBot move using the remote control to make it travel
around based on the buttons we push on the remote. We will keep it simple and just plan on moving
forward, backward, and turn left or right.

Requirements
The requirements for the program are:

1. The mBot shall move forward when the up arrow on the remote is pressed.

2. The mBot shall move backward when the down arrow on the remote is pressed.

3. The mBot shall turn left when the left arrow on the remote is pressed.

4. The mBot shall turn right when the right arrow on the remote is pressed.

5. The mBot shall stop when none of the arrow buttons are pressed.

6. The mBot shall not respond to any button presses that are not listed above.

Analysis
The first topic that needs to be understood is how robots move and turn. As you can probably guess
with a two-wheeled robot, you will need to ensure that both wheels are turning in the same direction
to go forward or backward.

Where things become interesting is when you want to have the robot turn. There are two types
of turns that the robot can make and each will have a different effect on how the robot turns and by
how much the robot will turn.

The first type of turn is often called “steering” because it causes the robot to turn in the fashion
as an automobile. To accomplish this type of turn, one wheel must turn and the other wheel must
not turn. This will have the effect of turning the robot in an arc based on the wheel that is not
turning. In the case of an automobile and other vehicles, what really happens is that the “inner”
wheel turns more slowly than the “outer” wheel.

77

10 | Baby You Can Drive My Bot

Figure 100: Automobile Steering Turning

The other type of turn operates in the same manner as a tracked vehicle or tank. One wheel will
turn one way and the other will turn the opposite direction. This type of movement will spin the
robot in place.

Figure 101: Tank Turning

Each type of movement has its place, and it depends on what you are attempting to accomplish.
Another factor that comes into play when making turns is the speed of the turn. Turns made at

a slower speed will be more accurate than those made at a higher speed. The speed issue holds true
for forward and backward movement as well.

Another factor that comes into play involve the charge level of the battery (or batteries if you
are using the battery pack). Fully charged batteries will make all movement involving motors much
faster than movements with a partially discharged battery (or batteries in the case of the battery
pack). If your mBot seems to be performing erratically, it might be time to change (or charge) the
batteries.

You also need to be aware that all remotes use the same frequency to communicate with the
mBot. If you are in a classroom setting, only one mBot at a time can be operating. Otherwise, the
mBot will happily respond to any other remote signal!

The mBlock environment has preset blocks for moving and turning based on the arrow keys that
we will use for this program. However, in later programs it will be necessary to look more closely at
ways to move the robot, especially when turning.

78

Design
The flowchart below depicts the logic the program will use to accomplish the task of responding to
button presses on the remote.

Figure 102: Baby You Can Drive My Bot

Let’s take a moment to walk through the flowchart to ensure that everything happening is well
understood. The program starts by turning off all of the motors to ensure that the robot starts in a
known state. From there the program goes into an endless loop waiting for button presses from the
remote.

If a button press is received, the program tests to see if it is a valid movement button. This is
an example of using guard code to filter out unwanted inputs by only accepting valid inputs. If the
button pressed is one of the buttons we accept for movement, the program will determine which
movement to make based on the button and will turn on the motors to make the movement. If the
button is not a valid movement button, the program will make the robot stop by turning off the
motors.

79

10 | Baby You Can Drive My Bot

Program Code
The following code (Figure 103) implements the logic described in the flowchart.

Figure 103: Baby You Can Drive My Bot Program

As you see, the test for the outer if-then-else block uses nested logical operators to implement the
guard code. It may be easier to build each of the nested blocks from right to left, beginning with
the leftmost logical comparison (left arrow or right arrow), followed by adding each layer of logical
operators. Written with parentheses, the equation would be:

(up arrow pressed or (down arrow pressed or (left arrow pressed or right arrow pressed)))

Note that when a button is pressed that we are not processing for movement the motors are set
at speed 0, effectively stopping the mBot’s movement.

Testing & Validation
It is now time to compile and run the program to determine whether or not it performs as expected.

Test Procedure
1. Press the up arrow button on the remote. Does the mBot move forward?

2. Press the down arrow button on the remote. Does the mBot move backward?

3. Press the left arrow button on the remote. Does the mBot turn to the left?

4. Press the right arrow button on the remote. Does the mBot turn to the right?

5. Press any other button other than the arrow buttons. Does the mBot move?

6. Does the mBot stop when no buttons are being pressed?

If the mBot passes all of the tests, you have successfully completed the assignment. Congratulations!

80

Troubleshooting & Debugging
Let’s look at what might have potentially gone wrong by narrowing down the potential points of
failure into a checklist and work through them.

1. The mBlock IDE cannot connect to the mBot

(a) Is the mBot turned on?
(b) Have you upgraded the firmware on the mBot from the Connect menu item?
(c) Did you install the Arduino driver for the mBot?

2. The mBot runs backwards when I want it to go forward

(a) Switch the motor plugs on the mCore board.

3. The mBlock IDE is not connected to the mBot

(a) Is the cable is connected to the mBot and the computer?
(b) Did you click the Connect menu item and choose the correct serial port?

4. Compilation or Upload failed

(a) Did the program compile without any errors?
(b) Were you able to upload the program to the mBot?

5. There is an error in the program.

(a) Did you create the variables correctly?
(b) Did you initialize all of the variables?
(c) Did you use the proper comparison operator?
(d) Did you check that your program matches the one in Figure 103?

Challenges
Modify the program to do the following:

1. Set up additional buttons to increase and decrease the speed of the robot.

2. Set up an additional button to make a sound on the buzzer based on some action, such as a
beeper when the robot is backing up.

81

10 | Baby You Can Drive My Bot

82

11 | Where’s My Line?

Program Description
One of the features of the mBot is the line following module (see Figure 104). This module will
enable the mBot to determine whether or not it is directly over a line or not as well as determining if
it has gone to the left or right side of the line.

Note that there are two pairs of emitter/receiver sensors at the front of the module. This
arrangement makes it simple to determine whether the mBot is completely on the line, partially off
to one side, or completely off of the line.

Figure 104: Line Follower Sensor

This program enables the mBot to follow a path marked by a dark (preferably black) line on a
light (preferably white) surface.

Requirements
The requirements for the program are:

1. The mBot shall detect a path marked by a dark line.

2. The mBot shall move forward along the path.

3. The mBot shall turn as needed to stay on the path.

4. The mBot shall execute a strategy to find the path if it strays off of the path.

Analysis
The program requires a line-following sensor to detect differences in light intensity. These differences
will tell the mBot whether or not it is over the line or not. The use of the line following sensor

83

11 | Where’s My Line?

assumes that the line will be of a different color than the rest of the course surface. Ideally, the line
will be black with the course surface being white to provide the highest contrast for the sensor.

The line-following sensor on the mBot is very cleverly designed to have two pairs on sensors. Each
pair of sensors has an emitter that radiates infrared light and a matching receiver. This arrangement
makes it simple to tell if the robot is on the line (both sensors return the same value), partially on
the line (one sensor returns a different value than the other), or completely off of the line (both
sensors return the same value). The table for the values is shown below:

Value Description
0 Both Sensors Over Line
1 Left Sensor Over Line / Right Sensor Off Line
2 Right Sensor Over Line / Left Sensor Off Line
3 Both Sensors Off Line

Table 7: Line Follower Sensor Values

This approach greatly simplifies the problem of writing a line-following program for the mBot (as
compared to a robot with a single sensor pair, such as a LEGO™ Mindstorms EV3™).

Movement Strategy
Our strategy for moving along the path is relatively simple:

1. If both sensors are over the line, move forward.

2. If the right sensor is off of the line, turn left slightly.

3. If the left sensor is off of the line, turn right slightly.

However, the requirements don’t tell us what to do if the mBot has moved completely off the line.
Let’s assume that the mBot traveled off the line while moving forward and simply have it back up
until it senses the line again.

Strategy for Locating the Path
Let’s assume that the line is within the turn radius of the mBot if it spins in place and have the
mBot spin in place until the line following sensor detects the line. This is a calibration step that
puts the mBot into a known position and state.

After the mBot has located the line, we can begin the actual line following process that has the
mBot make a turn in the appropriate direction to stay on the line. We also need to handle the case
of the mBot going completely off of the line, so let’s just have it back up until it (hopefully) finds the
line.

84

Design

The following flowchart captures our approach to movement and our strategy for re-finding the path
if the mBot goes off of the line.

Figure 105: Line Follower Flowchart

The flowchart depicts the calibration loop that is used to find the line based on our assumption
that the line is within the turning radius of the mBot. The second loop causes the robot to move
according to the value returned by the line following sensor. This final loop executes until you turn
the mBot off (or the battery runs out).

85

11 | Where’s My Line?

Program Code
As with previous programs, let’s walk through the code piece by piece starting with the Calibrate
block.

Figure 106: Where’s My Line? Calibrate Block

The Calibrate block sets the LineSensorValue variable to a known (impossible) value so that it
will enter the calibration loop in a known state. From that point, the block reads the line follower
sensor and causes the mBot to turn to the right.

Figure 107: Where’s My Line? Move Block

The Move block is fairly straightforward in operation. The block begins by getting a current
reading from the line follower sensor and making a decision on how to move.

Figure 108: Where’s My Line Main Logic

86

By using the two custom blocks, the main logic of the program is kept tight and readable. It uses
a single initialization for the motor speed. After the initialization is a wait until block that will wait
button pressed event on the mBot occurs. This will keep the mBot from starting to move until the
button is pressed. The Calibrate block is executed and is followed by a forever loop that contains
the Move block.

Testing & Validation
After compiling and uploading the code to the mBot, you are ready to test the program to see if it
performs as you expect.

Test Procedure
1. Place the mBot on the track and press the button. Does the mBot follow the path?

2. Press the reset button on the mBot that is by the USB connector and place the mBot slightly
off of the track.

3. Press the button on the mBot and see if the mBot can find the path.

Troubleshooting & Debugging
Let’s look at what might have potentially gone wrong by narrowing down the potential points of
failure into a checklist and work through them.

1. The mBlock IDE is not connected to the mBot

(a) Is the cable is connected to the mBot and the computer?
(b) Did you click the Connect menu item and choose the correct serial port?

2. The mBlock IDE cannot connect to the mBot

(a) Is the mBot turned on?
(b) Have you upgraded the firmware on the mBot from the Connect menu item?
(c) Did you install the Arduino driver for the mBot?

3. Compilation or Upload failed

(a) Did the program compile without any errors?
(b) Were you able to upload the program to the mBot?

4. There is an error in the program.

(a) Did you create the variables correctly?
(b) Did you initialize all of the variables?
(c) Did you use the proper comparison operator?
(d) Did you select the correct port for the Line Following Sensor?
(e) Did you check that your program matches the one in Figures 106 - 108?

87

11 | Where’s My Line?

Challenges
Modify the program to do the following:

1. Make noise when turning left/right.

2. Use colors on the LEDs to indicate which part of the program is being executed.

3. Develop an alternate strategy for if the mBot cannot find the line.

4. Develop a strategy for when the line is not within initial turn radius.

88

12 | Robotic Movement Part 1

Controlling Movement Distance
The mBot uses inexpensive analog motors that are controlled by the level of power applied to them.
Programs that require the mBot to travel a specified distance require us to think like engineers. We
need to measure, make calculations, and then test to see whether or not the results of the calculations
need to be modified.

Thinking Like an Engineer
The mBot wheels of the mBot are 6.4 centimeters in diameter. To determine the distance traveled in
a single rotation of the wheels, we need to determine the diameter of the wheels using a little math:

6.4cm ∗ π = ∼20.1cm

However, we don’t have any measurements that tell us how long it takes to travel that distance.
We need to do some experiments and measure how far the mBot travels over time. We also know
that it is likely that the mBot will travel farther over the same time increment at a higher power
level than at a slower power level so we should construct our experiment to account for that factor
as well. Finally, we should take several measurements for each reading and use the mean of the
measurements to factor out any minor differences from the motors.

We can record the distance traveled for each duration of time and power level in the chart provided
below:

Power 1 sec 2 sec 3 sec 4 sec 5 sec Mean
100
125
150
175
200
225
250

Table 8: Straight Line Power/Time table

Note: Each mBot is slightly different, so it is very important to take measurements for your
mBot. Also be aware that the battery charge level will affect movement distance.

89

12 | Robotic Movement Part 1

Program Description
Engineers often create tools to enable them to make measurements to support their calculations.
Let’s create a simple program that will allow us to measure the distance traveled for a known time so
that we can fill out the chart. When you run the program, you should take multiple measurements
and then determine the arithmetic mean to get a reasonable value for each power level and duration.

Even with simple tools, you will still need to follow the process because after all, it’s still a
program.

Requirements
The requirement for our program are relatively simple:

1. The program shall run the motors in a straight line for a user specified power level and duration.

Analysis
As a matter of course, you should isolate the power level and duration into their own variables so
that you only have to change them in one spot. You should also have the mBot wait for a button
press and then a short pause afterwards so that your finger can get out of the way!

Design
The flowchart below is a simple sequential diagram that fulfills the needs of the tool.

Figure 109: Straight Line Time and Power Program

90

Program Code
The program below contains the implementation of our straight line movement design. Note how
the wait until block is followed by a short delay so that your finger can move out of the way. Pay
attention to the final block in the program. Setting the power to zero for the block allows you to
make the motors stop.

Figure 110: Move Forward based on Time and Power Program

Testing & Validation
For this type of program, testing is fairly limited because there are not many places that it can fail.
Without access to the timer on the mBot, you cannot accurately measure the time so we will have to
assume that the hardware timer on the mBot works as designed.

Challenges
Having to constantly reconnect to the mBot to change the duration or power level can be tiresome.
You might want to consider making these changes to the code:

1. Use the buttons on the IR remote to increase/decrease the duration and power levels.

2. Sound a tone indicating whether the increase or decrease button has been pressed.

3. Use the LEDs to indicate the current duration and power level being used.

Now that you’ve written the program, you will need to make several runs (the number is up to
you) for each time period and power level on the chart. When you have completed gathering your
measurements, you are ready to tackle any programs that require the mBot to make a forward or
backward movement. Although getting the measurements takes some time, it is data that you can,
and will, reuse many times so it really is time well spent.

That’s thinking like an engineer!

91

12 | Robotic Movement Part 1

92

13 | We Like to Move It!

Program Description
One of the key elements of robotics is the ability to accurately control movement. Accurate movements
require the use of either an motor encoder or the use of a type of motor called a stepper motor20

The mBot does have either encoded motors or stepper motors (although you can buy those to
add on if you wish) but uses what is called a hobby gearmotor. As you should have noted, the motor
blocks do not allow you to precisely control the rotations, so the distance can only be controlled
through the power level and the time the engine is running, hence the point of the exercise in the
last chapter.

For this program, we will utilize the movement data we gathered and put it to use to make the
mBot move in a controlled fashion.

Requirements
The requirements for this program are:

1. The mBot shall move forward 25cm.

2. The mBot shall pause for one second after the first movement.

3. The mBot shall move forward 10cm.

Analysis
Obviously this is a fairly simple program and the challenges at the end of the chapter will have you
do additional experiments to make the mBot forward and backward using straight-line movement.
The goal of the exercise is to ensure that you know how to calculate the movement time based on
the power level.

Let’s tackle the calculation. You may or may not have a power/time measurement that is exactly
10cm or 25cm. If you don’t, you will need to perform a calculation to determine the distance to
travel. If you are using a power level of 100 and the distance traveled in one second is 12.9cm, then
you would perform the following calculation to get a close estimate of the time needed to travel that
distance:

Distance÷ CmPerSecond = Time

The rest of the program should be relatively straightforward to design.

20There is a nice discussion of the differences between an encoded motor and a stepper motor on the Electronics
board at Stack Exchange (http://goo.gl/N5qibQ) .

93

http://goo.gl/N5qibQ

13 | We Like to Move It!

Design
After thinking through the problem and our analysis, we could develop a flowchart that looks like
the one in Figure 111.

Figure 111: We Like To Move It! Flowchart

As you can see, we have created several custom blocks to encapsulate functionality to keep the
main line of the program clean and readable. We are also choosing to have the mBot wait until the
button is pressed.to begin its movement.

As usual, all initialization code has been captured in the Initialize block. In this case, we are
using our data from the last chapter (from the Mean column for the power level we use) to set the
Centimeters per Second rate of movement based on the power level we set as the Speed level.

In the moveForward block, we calculate the duration of the forward movement based on the
formula from our analysis. We then tell the mBot to turn on the motors and move forward. When
the duration expires, we tell the mBot to stop its motors.

The stopMotors block is somewhat contrived, but it is there for consistency.
The program design is complete so it is time to write the program.

94

Program Code

Figure 112: We Like to Move It! Program

The code accurately reflects the flowchart design, and by breaking down the logic into custom blocks
(again, as per the flowchart), we end up with well-encapsulated logic that is easy to read and debug
if necessary. The moveForward and stop blocks could form the basis of a movement library that you
can reuse for programs that require the mBot to move.

This type of reuse is not only a great time saver, but is highly encouraged to reduce software
bugs. “Why will it reduce software bugs?,” you might reasonably ask. When you have code that has
already been debugged and is known to work, you can rely on it to continue to work unless you (or
someone else) changes something in it. After all, there is no point in doing the same work over and
over again.

Testing & Validation
You will need some sort of measuring device (like a tape measure) that is divided into centimeters to
test your program. You may want to mark off the distances on a big piece of paper (you can make
this by taping several pieces of paper together lengthwise) to simplify measurement.

Test Procedure
1. Compile and load the program into the mBot.

95

13 | We Like to Move It!

2. Press the button on the mBot.

3. The mBot should move forward 25cm.

4. The mBot should pause after the first movement.

5. The mBot should move forward 10cm.

6. the mBot should stop.

Troubleshooting & Debugging
Let’s look at what might have potentially gone wrong by narrowing down the potential points of
failure into a checklist and work through them.

1. The mBlock IDE is not connected to the mBot

(a) Is the cable is connected to the mBot and the computer?
(b) Did you click the Connect menu item and choose the correct serial port?

2. The mBlock IDE cannot connect to the mBot

(a) Is the mBot turned on?
(b) Have you upgraded the firmware on the mBot from the Connect menu item?
(c) Did you install the Arduino driver for the mBot?

3. Compilation or Upload failed

(a) Did the program compile without any errors?
(b) Were you able to upload the program to the mBot?

4. There is an error in the program.

(a) Did you create the variables correctly?
(b) Did you initialize all of the variables?
(c) Did you use the proper arithmetic operators?
(d) Did you select the correct port for the Line Following Sensor?
(e) Did you check that your program matches the one in Figure 112?

5. The mBot moved too much or too little.

(a) Are your batteries fully charged?
(b) You may need to tweak your movement rates slightly.

Challenges
1. Modify the program to make the mBot flash the LEDs in different colors or make a sound

based on the different intervals.

2. Modify the program to make the mBot move forwards and backwards using the LEDs and
sounds to indicate distance and direction.

3. Modify the program to move forward in three increments, then move backwards in two
increments to reach the starting point.

96

14 | Robotic Movement Part 2

Now it is time to continue our discussion about robotic movement. Having covered straight line
movement, we will turn our attention to making accurate turns with the mBot. We had briefly
covered turns in Chapter 10: Baby You Can Drive My Bot, especially the difference between a
steering turn and a tank-like turn. Let’s dig a little deeper into their differences.

Steering Turns
You may recall from the earlier discussion that a steering turn involves the wheel on the outer (longer)
arc of the turn rotating faster than the wheel on the inner (shorter) arc of the turn. In many cases,
you may choose to either have the inner wheel not move at all (resulting in a turn that pivots on
that wheel) or to move less (resulting in a car-like steering maneuver). Let’s investigate this behavior
right now.

The sharp turn that pivots on the inner tire would be achieved by setting the motor for the pivot
point to zero and having the motor on the outer wheel run for a designated period of time. There
are two approaches for determining the time required to make the turn to a particular angle:

1. Calculate the distance the outer wheel needs to travel based on the speed used.

2. Calculate the total time required for the outer wheel to make a 360° turn based the speed used
and take the fraction of time required by the angle of the turn.

In the first method, we would need to know the measure of the turn and the rate of movement in
centimeters per second. Let’s first calculate the distance that would need to be traveled with the
following formula:

Distance = (((WheelDiameter ∗ π) ÷ 360) ∗AngleInDegrees) ∗ (WheelBase/WheelDiameter)

The formula determines the circumference of a wheel then divides it by 360 to get the length of
one degree. This value is then scaled by multiplying it by the ratio of the wheel base to the wheel
diameter to scale the distance the wheels must turn to support the larger arc of the wheelbase of
the mBot. To get the time required to make the turn, you would need to divide the distance to be
traveled by the rate of travel:

TravelT ime = Distance÷RateOfTravel

Math is awesome!
You will also likely need to do some tweaking to account for the differences in your motors, battery
charge level, etc. However, this calculation should get you most of the way there.

The mBlock environment provides you with blocks to control each motor individually if you like,
and that is what would be required for steering movements.

97

14 | Robotic Movement Part 2

The second method of controlling turns is to measure how long it takes for the mBot to complete
a 360°turn at a particular speed. You can then calculate the time as:

TravelT ime = (DegreesOfTurn÷ 360) ∗ Turn360Time

As before, the actual turn time depends on the speed/power that is applied to the motor, battery
charge level, etc., and will require some minor tweaking to get right.

Either of the previously mentioned calculations work for a pivot turn and for the mBot, a pivot
turn for car-like steering is probably adequate. If you are interested in pursuing more accurate
calculations, there is a good reference paper at the Rossum Project21 that discusses differential
steering in depth.

Tank-like Turns
The Makeblock firmware for the mBot specifies a tank-like turn. Internally the block takes the power
setting and applies it to the outer wheel, negates the value and applies it to the inner wheel.

For example, if the mBot is asked to make a left turn at a power of 100, internally the right wheel
(outermost wheel in the turn) will turn in a forward movement at a power of 100. The left wheel will
turn in a backward movement at a power of -100.

The calculations mentioned before work with tank-like turns so we won’t have to go back over
that. For the sake of simplicity, let’s create a table of turning times for a 360° turn at several different
power levels. These turns are based on the tank-like turns provided by the run [direction] block in
mBlock.

You will need some way to measure a 360°turn to complete the turning table below. There is a
360°compass in Appendix F: Resources that you can print out if you have the eBook version of the
book. The diagram will also be available as a PDF file in the code repository22

We need to fill out the following table:

Power Time
100
125
150
175
200
225
250

Table 9: Turning Power/Time

so it is time to build a tool that let’s you measure the time it takes to make a 360°turn.

Program Description
To fill out the chart you will need to write a program that allows you to make the mBot turn for a
specified duration and power level.

21http://rossum.sourceforge.net/papers/DiffSteer/
22https://goo.gl/CWROM5

98

http://rossum.sourceforge.net/papers/DiffSteer/
https://goo.gl/CWROM5

Requirements
The requirements for this program are:

1. The program shall cause the mBot to turn for the specified duration and power level.

Analysis
Looking at the requirements, this will be a relatively simple program requiring the parameters of the
move block (set to turn right or turn left).

Design
The flowchart is equally simple, although note the use of variables to make the program more
readable.

Figure 113: Turn Tool Flowchart

Program Code
The program code is also straightforward, although you should note that there is a wait until block
used to keep the mBot from turning until you press the button on the mBot.

Figure 114: Turn Tool Program

99

14 | Robotic Movement Part 2

Testing & Validation
You will need a stopwatch if you want to test whether the hardware clock on the mBot is accurate
although this is unnecessary for this application. You will need to run the test several times to make
sure that you have the correct timing for each power level.

Test Procedure
1. Set the power level at 100.

2. Set the duration for 1 second.

3. Compile and upload the program.

4. Run the program

5. Press the button.

6. Adjust the duration as necessary and repeat the process until the mBot completes a 360°turn.

7. Repeat the process for the other power levels

100

15 | Trace A Shape

Program Description
Now that we have the data to support controlled turns, let’s do a practical exercise. In the Resources
folder of the Github repository23 associated with the book is a file named TraceAShape.pdf contains
a triangle that can be printed on an 11” x 14” sheet of paper. You can likely guess that we will write
a program to make the mBot trace the triangle.

Dead Reckoning

Dead reckoning is the navigational process used to calculate a new position based on the current
position, a direction for the new position, and a known distance to the new position. Be aware
that dead reckoning can be subject to cumulative errors over time. If your robot is making
several movements, small inaccuracies in each of the movements will add up to make future
movements less accurate.

Requirements
The requirements for this program are:

1. The robot shall move forward 25cm.

2. The robot shall execute a 120°turn.

3. The robot shall repeat these operations until it returns to the starting point.

Analysis
The first requirement can be satisfied by retrieving the rate of movement from the Power/Time
movement table for the power level you select. You will need to use the following formula to determine
the time that the motors should run:

RunTime = Distance÷RatePerSecond

The next task is to determine the time required to make a 120° turn, so retrieve the turning rate
from your 360° Turn Chart from Chapter 14: Robotic Movement Part 2. You will likely need to
make some small adjustments to the running times for both the straight line movement and the
turning movement, but the reference numbers should get you most of the way there to start with.

Hint: Turning at a slower speed results in a more accurate turn.

23https://goo.gl/CWROM5

101

https://goo.gl/CWROM5

15 | Trace A Shape

So where did the 120° measurement come from for the turns? When dealing with non-intersecting
equi-angular polygons, you can derive the measure of the exterior angles by dividing 360° by the
number of edges. For example, a triangle has three sides, so 360° divided by 3 would equal 120°.

Design
From the requirements, we know that we are dealing with a triangle and that we need to repeat a
series of actions three times. Therefore we should use a loop to contain the movement logic. The
resulting flowchart would be:

Figure 115: Trace A Shape Flowchart

102

Program Code
In the initialize block, we will set up several variables to support the program operations and to
minimize the places where we need to change values.

Figure 116: Trace A Shape Initialize Block

The moveForward block takes two parameters for speed and distance, then makes the necessary
calculation to determine how long to run the motors. This approach to creating the block makes it
reusable with future programs requiring this type of movement.

Figure 117: Trace A Shape Move Forward Block

The turnRight block encapsulates the calculations needed to make the mBot turn to the right for
the specified number of degrees. The calculation itself is:

Duration = (Degrees÷ 360°) ∗ 360TurnT ime

The block could be improved by adding a Speed parameter if the turns needed to be performed at a
different speed than the straight line movements.

Figure 118: Trace A Shape Turn Right Block

103

15 | Trace A Shape

The stop block is somewhat contrived for completeness. However, readability is improved by
hiding the motor block within the stop block.

Figure 119: Trace A Shape Stop Block

Finally, the main program keeps with the practice of minimizing the amount of code while
maximizing readability.

Figure 120: Trace A Shape Main Program

Testing & Validation
Test Procedure

1. Compile and upload the program.

2. Press the green button on the mBot.

Does the mBot accurately execute all of the movements and return to its starting point?

Troubleshooting & Debugging
Let’s look at what might have potentially gone wrong by narrowing down the potential points of
failure into a checklist and work through them.

1. The mBlock IDE is not connected to the mBot

(a) Is the cable is connected to the mBot and the computer?
(b) Did you click the Connect menu item and choose the correct serial port?

2. The mBot runs backwards when I want it to go forward

(a) Switch the motor plugs on the mCore board.

3. The mBlock IDE cannot connect to the mBot

(a) Is the mBot turned on?

104

(b) Have you upgraded the firmware on the mBot from the Connect menu item?
(c) Did you install the Arduino driver for the mBot?

4. Compilation or Upload failed

(a) Did the program compile without any errors?
(b) Were you able to upload the program to the mBot?

5. There is an error in the program.

(a) Did you create the variables correctly?
(b) Did you initialize all of the variables?
(c) Did you use the proper arithmetic operators?
(d) Did you check that your program matches the one in Figure 116 - 120?

Challenges
1. Modify the program to trace the outline of a square.

2. Modify the program to trace the outline of a pentagon.

3. Modify the program to trace the outline of a hexagon.

4. Modify the program to trace the outline of an octagon.

Optional Advanced Challenges
1. Create a version of the program that can trace a circle.

(a) Start the mBot on the outside edge of the circle and have it trace the shape.
(b) Start the mBot at the center of the circle and have it move the distance of the radius and

execute a 90° turn before tracing the shape.

2. Create a version of the program that follows a path you make.

Hint: If the path requires left turns, you will need to implement a leftTurn block similar to the
rightTurn block.

105

15 | Trace A Shape

106

16 | Obstacle Avoidance

One of the challenges for robotic movement is the occurrence of physical obstacles, such as furniture,
walls, etc. Whenever a physical obstacle is encountered, the mBot must execute an avoidance strategy
to go around the object. The focus of this chapter centers on developing an object avoidance strategy
for the mBot.

Figure 121: Avoid Obstacle Movement Strategy

Note: This program will be concerned with obstacles in the path that protrude up from the ground,
not with holes.

107

16 | Obstacle Avoidance

Program Description
The program will enable the mBot to move forward and avoid any obstacles it encounters.

Requirements
The requirements for this program are:

1. The mBot shall execute an avoidance strategy whenever it encounters an object within 5
centimeters.

2. The avoidance strategy shall allow the mBot to navigate around the object and then continue
forward movement on the same line it was on before moving around the object.

Analysis
Having already learned to control movement and turns in previous exercises, it is time to put our
knowledge to work. We need to develop a strategy to detect and avoid obstacles in the path of the
mBot.

From the Ultrasonic Theremin exercise, we know that the ultrasonic sensor can detect objects at
range. It makes sense to use that sensor to detect any obstacles within the specified range.

Developing the actual avoidance strategy is our next objective. A strategy is a plan of actions to
take so let’s think through what might be a reasonable strategy. One strategy might be:

1. Back up a specified distance.

2. Turn right (or left) and move forward.

3. Turn left (or right if you turned left in step 2) and move forward.

4. Turn left (or right if you turned left in step 2) and move forward.

5. Turn right (or left if you turn left in step 2) and move forward.

This is a simple type of dead-reckoning strategy that assumes that the dimensions of the obstacle
are known. While this strategy will work for the purposes of demonstrating detection and avoidance
of an obstacle, in real life a more flexible strategy would be required. The real world that the
mBot interacts with may have obstacles of varying shapes and sizes as well as being arranged in an
unpredictable fashion. One of the challenges at the end of this chapter is to think of a more flexible
approach to dealing with obstacle detection and avoidance.

108

Design
Main Logic

Figure 122: Obstacle Avoidance Main Logic Flowchart

The logic presented begins with an initialization block to set up any variables followed by a wait
until block that waits for the button on the mBot to be pressed before any movement occurs. From
this point, the mBot moves forward and attempts to detect any obstacles. If an obstacle is detected,
the mBot executes its avoidance strategy followed by setting the exit flag so that the main loop will
exit and cause the mBot to stop.

This flowchart makes heavy use of on-page connectors (the circles with letters in them) to keep
the diagram clear and concise. When you are designing complex programs, you will want to take
advantage of on-page connectors to keep the diagram from becoming a tangle of lines.

109

16 | Obstacle Avoidance

Detect Object Logic

Figure 123: Obstacle Avoidance Detect Obstacle Logic Flowchart

The Detect Obstacle logic clears the flag denoting whether or not an obstacle has been detected, then
pauses briefly to read the ultrasonic sensor to ensure an accurate reading.

The Joys (and Perils) of Inexpensive Robotics

We are living in a remarkable time where the size and cost for robotic components are amazingly
low. You can assemble a fairly advanced robot for $75-$100 dollars (US Dollars) with components
that are readily available both locally and from the Internet. However, the old adage, “You Get
What You Pay For,” should be kept in mind.

As a general rule, hobby-grade components are more than adequate for most needs. However,
they will not be as accurate or as consistent as higher priced components aimed at commercial
markets. The ultrasonic sensor that comes with the mBot is a hobby-grade component and in
some cases you may have to find workarounds for behaviors that you might not experience with
a commercial-grade ultrasonic sensor.

That being said, unless you really, really need the precision and reliability that a commercial-
grade component provides, stick with the hobby-grade components. Your wallet will thank you,
and you’ll get to use your own ingenuity or leverage the ingenuity of others to make things work.

110

Avoidance Logic

Figure 124: Obstacle Avoidance Strategy Flowchart

The Avoid Obstacle logic is very straightforward. After setting the LEDs to red to indicate that the
avoidance logic is being executed, the mBot makes a series of movements based on the dead-reckoning
strategy that is being used. When all movements contained within the strategy have been executed,
the LEDs are set back to green, indicating that the avoidance strategy is no longer being executed.

The use of the LEDs to indicate the current state of the mBot program enable the programmer
to confirm that the avoidance strategy is being executed. This type of visual marker is often used
when testing a program where no display is available and it makes the mBot’s movements much
more colorful and interesting.

Having previously covered the logic behind moving and turning, we will not repeat those flowcharts
here. You can refer to Chapter 13: We Like to Move It! and Chapter 15: Trace A Shape if you need
to refresh your memory on how that logic works.

Program Code
This is the largest program that we have written so far, and like the earlier programs we will break it
into smaller parts that can be quickly and easily understood. We will not revisit the movement-related
blocks from earlier chapters to avoid needless repetition.

111

16 | Obstacle Avoidance

You should consider building an empty template program that contains those blocks so that you
can easily reuse them in other programs. If you have not yet done so, now might be a good time to
do that. This habit is definitely considered a best practice and it has the added benefit of letting you
focus on the new parts. When this practice becomes automatic you will truly be working smart, not
working hard (and great programmers are really lazy like that!!!).

Initialization

Figure 125: Obstacle Avoidance Initialization Block

The Initialize block sets up the initial values for our variables and ensures that the LEDs are set to
green to indicate a normal, running state.

Detect Obstacle

Figure 126: Obstacle Avoidance Detect Object Block

The detectObject block has the task of setting a flag if an obstacle is within a certain range. This is a
generic enough task that it should be considered for addition into your template program. Notice
that the block allows for a 0.2 second settling period so that the ultrasonic sensor can get a solid
reading.

112

Avoid Obstacle

Figure 127: Obstacle Avoidance Avoid Obstacle Block

The avoidObstacle block contains the obstacle avoidance strategy. As mentioned earlier, a hard-coded
strategy is not the way to go on a real-world application, but it suffices for our purposes here.

The block itself is straight forward in implementation, setting the LEDs to red while executing the
strategy, and then setting the LEDs back to green when the strategy execution has been completed.
The advantage of encapsulating the strategy in this fashion is to allow the programmer to change the
strategy without the need to change the rest of the program.

Main Program Logic

Figure 128: Obstacle Avoidance Main Program

The main program logic uses the familiar wait until block to prevent the mBot from moving until
the button on it is pressed. The rest of the program follows the logic set by the flowchart. Note that
the program uses a repeat until loop to continue moving until the StopFlag is set after an obstacle is
detected and avoided.

113

16 | Obstacle Avoidance

Testing & Validation
Test Procedure

1. Compile, upload, and run the code on the mBot.

2. Press the button on the mBot.

Troubleshooting & Debugging
If your mBot did not successfully avoid the obstacle, take a look at what might have potentially gone
wrong by narrowing down the potential points of failure into a checklist and work through them.

1. The mBlock IDE is not connected to the mBot

(a) Is the cable is connected to the mBot and the computer?
(b) Did you click the Connect menu item and choose the correct serial port?

2. The mBot runs backwards when I want it to go forward

(a) Switch the motor plugs on the mCore board.

3. The mBlock IDE cannot connect to the mBot

(a) Is the mBot turned on?
(b) Have you upgraded the firmware on the mBot from the Connect menu item?
(c) Did you install the Arduino driver for the mBot?

4. Compilation or Upload failed

(a) Did the program compile without any errors?
(b) Were you able to upload the program to the mBot?

5. There is an error in the program.

(a) Did you create the variables correctly?
(b) Did you initialize all of the variables?
(c) Did you use the proper comparison operator?
(d) Did you check that your program matches the one in Figures 125 - 128?

Challenges
The strategy used to avoid an obstacle is hard-coded for a specific set of movements and dimensions.
A more flexible approach would be to move forward for a specified distance, and continue to turn in
the direction of the obstacle (left if you turned right to avoid it), and check to see if it is still in the
way. Now is a good time to consider other more flexible ways of detecting and navigating around the
obstacle.

1. Modify the program so that the mBot can move around obstacles of unknown dimensions.

2. Modify the program so the mBot can deal with multiple obstacles of unknown dimensions.

114

17 | Bashin’ at the Basho

The Ancient Sport of Sumo Wrestling
You may or may not be familiar with the ancient Japanese sport of sumo wrestling. In this sport,
the two wrestlers attempt to push their opponent out of the ring or to throw the opponent to the
ground. The wrestlers are typically very large men who are specially trained for the sport.

Although most of the sumo wrestlers are Japanese, there are a few who come from the United
States and one was even the grand champion!

The Modern Sport of Robotic Sumo Wrestling
In modern times, the sport of sumo wrestling has become a popular pastime for roboticists. The
robotic sumo competitions have weight classes just like the real sumo competitions and an opponent
is eliminated when it is pushed out of the ring (whether intentionally or accidentally) or if the
opponent is flipped and cannot continue moving.

We won’t worry about flipping the mBots, but we will focus on trying to push them out of the
ring!

Scoring
• Pushing an opponent out of the ring is an automatic victory.

• A charge at an opponent that results in contact with that opponent scores 1 point.

• If no sumo robot is pushed out of the ring, the sumo robot with the most points wins.

• Ties are decided by the sumo robot owners playing Rock-Paper-Scissors in a best of five match
(3 victories to win).

Robots versus Remote Control Vehicles
You’ve likely seen or heard of television shows that feature competitions between “robots.” These
human-driven machines are armed with all manner of saws, hammers, spikes, wedges, etc., and flail
away at each other. While it is an exciting spectacle, the stars of the show are merely tele-operated
vehicles, not robots.

"What!?!" you say, "but the announcers and participants call them robots!" You’d be right to
be confused, because the popular media labels a lot of things incorrectly and this is an excellent
example of that unfortunate practice.

Let’s think back to the definition provided by Maja Materić in the preface:

“A robot is an autonomous system which exists in the physical world, can sense its
environment, and can act on it to achieve some goals.”

115

17 | Bashin’ at the Basho

The key term is the word autonomous, meaning the system can act on its own. In essence, if
a human is actively providing the intelligence then the system is not a robot but a tele-operated
system.

Some robots are trained via a human controlled harness, but do not rely on human intelligence
after being trained and operate autonomously. However, the vehicles in the television robotic battle
shows and their ilk are more akin to remote controlled vehicles — but a lot more dangerous! That
being said, don’t let that definition keep you from building tele-operated vehicles. Just recognize
that calling them robots is misusing the term.

Program Description
The goal of this program is to create a program that allows the mBot to act as a robotic Sumo
wrestler.

Requirements
The requirements for this program are:

1. The robosumo mat shall be circular with a minimum interior diameter of 24 inches (~61cm).

2. The mBot shall be able to move around within the confines of a ring.

3. The mBot shall be capable of detecting the edge of the ring.

4. The mBot shall be able to execute an avoidance strategy to stay within the ring when a ring
edge is detected.

5. The mBot shall be able to locate an opponent.

6. When an opponent is located, the mBot shall charge at the opponent and attempt to push the
opponent from the ring.

7. The mBot shall have the capability to stop movement after the round duration has expired.

Analysis
To fulfill the requirements of this program, you will need to solve several problems:

1. Detect the edge of the ring and move away from it.

2. Detect other robots and move towards them.

3. Track the time to know when to quit

Next you need to ask yourself:

1. Which sensor can be used to detect the edge of the ring?

2. What avoidance strategy can be utilized to stay within the ring area?

3. What strategy (or strategies) can be utilized to locate an opponent?

4. Which sensors can be used to detect an opponent?

5. What can you use to track the elapsed time?

116

Detecting the Edge of the Ring
The first problem requires the mBot to detect the ring edge and to turn and move away from it. You
can reuse the movement modules from earlier programs to shorten development time because you
have already tested those modules.

To ensure that the turns don’t keep turning directly into the ring edge, we can specify that each
turn will be 120°. We know from the Where’s My Line? Program that the line following module
returns a value ranging from 0-3, where 0 indicates that both sensors are over the line, 1 indicates
the right sensor is over the line, 2 indicates that the left sensor is over the line, and 3 indicates that
neither sensor is over the line.

Let’s simplify our coding by stating that if both sensors are over the line, the mBot will execute
a left turn before proceeding, just as if the right sensor had been over the line. If the left sensor is
over the line, the mBot will execute a right turn before proceeding. We can ignore the case where
both sensors are not over the line because that should be the normal case when moving.

Detecting an Opponent
When an opponent is detected in attacking range, the mBot should charge at it and attempt to push
it out of the ring. In practice, there are several strategies that can come into play. The simplest
strategy is to move around the ring until an opponent is detected. Since the Ultrasonic sensor is the
only sensor on the mBot that is capable of detecting objects at specified distances, it will be the
primary means of detecting an opponent. When there is no opponent in range, the mBot should
revert to moving at its normal speed and spinning slowly at intervals to look for an opponent.

Tracking the Time
The mBot has a clock on board that counts time in milliseconds from when the mBot was turned on.
This timer can be reset and effectively used to know when it is time to stop moving. It is important
to note that the timer is not blocking, i.e., it will not stop the program from executing unlike a wait
block which will stop the program until it is done waiting.

Design
With the increased complexity associated with this program, we will take a top-down design approach
beginning with the main logic and working through to each custom block needed to support the
main logic. The other approach to design is referred to as bottom-up where you design all of the
blocks first and then the main logic. There are times that this approach may yield better results, but
many software engineers will initially work from the top down.

117

17 | Bashin’ at the Basho

Main Program Logic
In the top-down approach, the designer is concerned with the high-level details, in this case the
high-level logic of the program.

Figure 129: Bashin’ At The Basho Main Program Logic

You may note that we continue the pattern of performing our initialization (Initialize) and have
the program enter a wait until loop so that the mBot doesn’t just start moving right out of the gate.

The program changes the LEDs to green to provide a visual indication of the current movement
state, in this case indicating a normal movement state, and continues by having the mBot begin
moving forward.

A reset command is issued to the hardware timer and the Start Time variable is set to the current
timer value. The End Time is calculated immediately afterwards.

At this point, the program enters into its main loop. Within the loop, the first action is to check
to see if the match time has expired. Following this statement, a check is made for a ring edge, and
finally a check to see if an opponent it within range.

The loop will exit when time expires and will subsequently stop the motors.

118

Check for Ring Edge Logic
The logic for turning right and left are reused from past programs and will not be shown. Likewise
the logic for checking to see if time has expired for the match will not be shown due to its simplicity.

The logic to check for the edge of the ring is shown in Figure 130:

Figure 130: Bashin’ At The Basho Check for Ring Edge Logic

This is a relatively straightforward strategy that uses the line sensor to detect the ring edge. If
the edge of the ring is detected, the program uses a simple strategy that causes the mBot to back up
slightly, turn left by 120°.

Following the turn, the LEDs are set to green to account for those occasions that the ring edge
is detected during a charge. Finally, the mBot is reset to a normal forward movement state before
returning to the main program logic.

119

17 | Bashin’ at the Basho

Check for Opponent in Range
The next block to explore checks to see if an opponent is within the attack range of the mBot. Our
requirement states that the mBot should move towards an opponent when one is in range. The
program will use the Ultrasonic sensor to detect whether or not an opponent is within a designated
attack range, and moving in a charge towards to opponent if one is within range.

Figure 131: Bashin’ at the Basho Detect Opponent Logic

Charge at Opponent Logic
The last block to explore contains the charge logic. Although it could be argued that the logic could
be directly included in the Is Opponent In Range block, it’s often better to isolate this type of code
for testing and debugging purposes. The logic is displayed in Figure 132 below.

Figure 132: Bashin’ at the Basho Charge Logic

120

Note that the if statement uses two different conditions (Line Follower Value < 3 and Opponent
Out of Attack Range) to control the loop. The use of two or more conditions is referred to as a
compound conditional statement by mathematicians and computer scientists. Because the compound
conditional is an or, the loop will exit if either condition is met. If the statement had used an and,
both conditions would have to be met to exit the loop. On that note, let’s take a slight diversion to
talk about logical comparative operators.

Logical Operators

The mBlock environment provides three logical operators, and, or, and not that can be used if
statements. The previous paragraph mentioned the or and the and operators so for completeness
you should know that the not operator negates whatever other comparison is being made. For
example, the Line Follower sensor will only return the values 0-3.

The statement not LineFollower = 3 would read as not(LineFollower = 3). Because the
LineFollower sensor returns integer values in the 0-3 range, the statement would be the equivalent
of saying LineFollower < 3 because 0, 1, and 2 are less than three.

When trying to optimize code size and performance, it is often useful to determine whether
or not a not operation can be rewritten to avoid using the not because it is an extra operation
(time) and takes extra space in the PROGMEM. Not all nots can be eliminated in this fashion,
but it is worthwhile to validate whether the not operator really needs to be used in a comparison.

Program Code
Main Program Logic
Let’s look at the main program logic first before diving into the custom blocks this time.

Figure 133: Bashin’ at the Basho Main Program

The logic follows the flowchart, but there seems to be many more blocks in the main program
than in earlier programs. This is an implementation decision and is based on whether or not the

121

17 | Bashin’ at the Basho

developer believes that adding a custom block to hide these details really makes sense. In this case,
the developer thought it unnecessary to do so. However, you may choose to create a custom block to
hide these details from the main program if you like.

The program starts with an Initialize block followed by a wait until block with a small delay to
let the finger get out of the way. This pattern should be a familiar one at this point.

The next series of blocks is concerned with set the LEDs to green to indicate a normal movement
state followed blocks to reset the hardware timer, assign a value based on the hardware timer as the
starting time and setting the end time to a calculated value based on the start time. In this case, the
start time is incremented by 30 seconds. For a three minute round, the end time should be set to a
value of the starting time plus 180 seconds.

At this point the program enters its main loop, a repeat until loop that will continue to run
until a flag (StopFlag) is equal to a value of one. The use of the flag allows to set the value for an
exit condition from any block used within the loop. Within the loop are the three custom blocks
checkTimeOut, checkForRingEdge, and isOpponentInRange. These blocks form the backbone of the
program’s operations and guide the mBot during its journey through the sumo ring. The final block
ensures that the motors on the mBot stop when the main loop exits.

Initialization
The Initialize block to contain all of the housekeeping for the program, such as setting up the initial
variables and their values.

Figure 134: Bashin’ at the Basho Initialize Block

Check for Timeout
The checkTimeOut block is responsible for setting the exit flag if the allocated time for the match
has expired. It is trivially simple, but hiding the implementation in a custom block improves the
readability of the main program.

Figure 135: Bashin’ At The Basho Check Timeout Block

122

Check For Ring Edge

The checkForRingEdge is a slight variation on how the line follower sensor was used in Chapter 11:
Where’s My Line.

Figure 136: Bashin’ At The Basho Check For Ring Edge

Note how the program makes a slight pause before reading the line follower sensor to ensure an
accurate reading. From this point, the value is checked to determine whether or not the edge of the
ring has been detected. If the edge of the ring has been detected, the program executes its avoidance
strategy by backing up and turning. Finally, the LEDs are set to green for normal movement and
forward movement resumes.

You will need the turnLeft block from one of your earlier programs to allow the mBot to make
a controlled turn. This type of reuse can be easily achieved if you have created a template starter
program that contains the library of blocks that you’ve already built.

Is Opponent In Range

The isOpponentInRange block (not shown) is the detectObject block from the chapter on obstacle
avoidance with the name changed to be more reflective of the way it is being used. Please refer to
Chapter 16 if you need to review the detectObject block implementation.

Charge

The charge block sets the LEDs to red and executes the blocks necessary to make the mBot charge
at an opponent at maximum speed. Note the use of the or block to terminate the charge movement
when the ring edge is detected or the opponent is no longer within attack range.

123

17 | Bashin’ at the Basho

Figure 137: Bashin’ At The Basho Charge Block

Testing & Validation
Test Procedure

1. Compile and upload the program.

2. Press the button.

3. The mBot should start moving forward.

4. The mBot should back up when it detects the edge of the ring and turn left before moving
forward.

5. The mBot should move in a charge at maximum speed when it detects anything within the
specified attack range.

6. The mBot should stop moving after the match time has expired.

You may want to test each custom block as you build it to ensure that it works before you move
on to creating the next block.

Troubleshooting & Debugging
Let’s look at what might have potentially gone wrong by narrowing down the potential points of
failure into a checklist and work through them.

1. The mBlock IDE is not connected to the mBot

(a) Is the cable is connected to the mBot and the computer?
(b) Did you click the Connect menu item and choose the correct serial port?

2. The mBot runs backwards when I want it to go forward

(a) Switch the motor plugs on the mCore board.

3. The mBlock IDE cannot connect to the mBot

(a) Is the mBot turned on?
(b) Have you upgraded the firmware on the mBot from the Connect menu item?
(c) Did you install the Arduino driver for the mBot?

4. Compilation or Upload failed

124

(a) Did the program compile without any errors?
(b) Were you able to upload the program to the mBot?

5. There is an error in the program.

(a) Did you create the variables correctly?
(b) Did you initialize all of the variables?
(c) Did you use the proper comparison operators?
(d) Did you check that your program matches the one in Figures 133 - 137?

6. The mBot does not move faster when charging at an opponent.

(a) Make sure your batteries are fully charged.
(b) Make sure the charge speed is different than the normal speed.

7. Why does the mBot drive right by an opponent?

(a) Depending on the speed of the mBot and the opponent, the criteria for being in range
may have been missed if the mBot and opponent moved in and out of range before the
Ultrasonic sensor reading was obtained.

Challenges
Adding lights and sound is one way to make the sumo match more interesting.

1. Modify the program to make the LEDs green when the mBot is just moving around and red
when the mBot charges at an opponent.

2. Modify the program to make the LEDs flash red when charging at an opponent.

3. Modify the program to make the mBot play a sound or melody when not charging at an
opponent.

4. Modify the program to play a different sound or melody when the mBot is charging at an
opponent.

5. The current strategy for detecting an opponent relies on random chance as the mBot moves
around the ring. Can you devise and implement a better strategy for finding an opponent?

125

17 | Bashin’ at the Basho

126

18 | A-Maze-ing!

Mankind’s fascination with mazes and labyrinths seem to stretch back as far as we have recorded
history. The challenge of finding ones way through a series of twisting passages continues to pose an
intellectual challenge whether one is solving the maze on paper or in the physical world.

Mazes vs. Labyrinths
Because precise definitions are important, we need to distinguish between a maze and a labyrinth.

1. A maze is a collection of connected passages with at least one entrance and at least one exit.
The goal of a maze is to find the exit.

2. A labyrinth is an area with a single entrance that also serves as its exit. The goal of a labyrinth
is to reach a designated point within its bounds.

Program Description
The goal of this exercise is to create a program that allows the mBot to navigate a structure that
combines elements of a labyrinth and a maze. This exercise will allow you to use all of the skills and
techniques covered in the book to create a program that allows your mBot to solve a maze.

Requirements
The requirements for this program are:

1. The program shall enable the mBot to detect connecting passages.

2. The program shall enable the mBot to execute a maze-solving strategy to locate the designated
end point.

3. The maze-solving strategy shall enable the mBot to locate the designated end point regardless
of the starting point.

4. The program shall only use the sensors and devices that come with a stock mBot.

Analysis
Maze-Solving Strategies
There are several strategies for solving mazes. However, not all strategies solve all mazes equally
well. We also need to be aware that the subset of Scratch that supports the mBot is fairly limited
and as such limits our selection of strategy.

127

Chapter 18 A-Maze-ing!

For this program, let’s use a simple wall-following strategy. It is not the fastest approach, but it
will eventually solve the maze so long as the maze does not have any loops.

The wall-following strategy works by having the mBot place an imaginary hand on a wall (right
or left, it’s your choice) and keeping that hand on the wall. The algorithm works as follows:

1. Check to see if mBot is at designated end of labyrinth.

2. Turn left and check for a wall.

3. If there is no wall, move forward. Otherwise turn back to the right.

4. Check to see if there is a wall straight ahead.

5. If there is no wall, move forward.

6. If there is a wall, turn right and check to see if there is a wall.

7. If there is a wall, turn right. Otherwise, move forward.

Challenges for Maze Solving
There are several challenges associated with successfully creating a maze-solving program.

1. Navigating down the center of the passageways.

2. Detecting walls.

3. Strategy for handling dead-ends.

Challenges with mBlock
The mBlock IDE only supports a limited subset of Scratch blocks and unfortunately neither a list or
a string (which might be pressed into service as an array) are supported at this time24

Challenges with the mBot
Although you have gathered data for movement and turning, the mBot still suffers from a lack
of precision when it comes to moving. The inability to make extremely accurate turns present a
particular problem for navigation because the errors become additive over time. Likewise, forward
movement errors become additive and you may find that your mBot is running into walls and getting
stuck!

Maze Design
The mBot comes with several sensors, but to build a maze-solver will require the maze to be designed
and constructed in a fashion that supports the mBot’s capabilities. Normally a maze-solving robot
uses a sensor array to detect walls or if the maze is a line maze it will use an array of line sensors.

We are limiting ourselves to a stock mBot, so we will have one ultrasonic sensor and one line
following sensor. The maze will need to be designed with this limitation in mind. The suggested
approach is to use posts to hold walls and to put lines on the floor of the maze (Figure 138).

24Remember, this constraint applies to programs directly running on the mBot, not programs run from within the
mBlock environment.

128

Figure 138: Sample Maze

In the sample maze, you’ll note that there is not a designated starting and ending point. The
starting can be any square in the maze, but marking the ending point might appear to be a bit
tricky. In reality, You can mark the end point of this maze by covering the uppermost vertical line
and the two horizontal lines with something of the same color as the maze floor. This has the virtue
of allowing you to designate any room as the final room.

Figure 139: Marking The End of the Maze

Breaking Down the Boulder

You can’t solve this problem all at once, so let’s break it down into smaller problems. The first
problem is navigation. You need to enable the mBot to travel in straight lines and to make accurate
turns to the left and right. This is a problem that can be solved using the line following sensor so
long as we have lines on the maze floor.

129

Chapter 18 A-Maze-ing!

Forward Movement

You have already gathered the data to be able to move a designated distance in a straight line from
earlier work, so you can reuse the block for forward movement. You will need to position the mBot
so that the axles are centered on the horizontal line and move forward until they are centered on the
next horizontal line. You may need to do several runs to get the exact number (and the number will
depend on how big your rooms are). You should also refresh your memory on how to make the mBot
follow a line.

Turns

While we could use our turn blocks from the past, those depend on timing and as mentioned several
times, there will likely be additive errors that may cause the turns to become increasingly inaccurate.
A more accurate approach is to make the mBot turn off of the line in the desired direction and
then continue turning until both pairs of sensors on the line following sensor are over the line.
This approach almost always guarantees a fairly accurate turn. If you need the mBot to continue
moving forward after the turn the line following part of the program should correct for any off-center
positions.

Detecting the Walls

The walls of the maze are solid, vertical surfaces that lend themselves well to being detected by the
ultrasonic sensor. However, the relatively inaccurate movements of the mBot suggest that the mBot
should treat anything that is less than the distance from the center of one room to the center of the
next room as a wall. This approach will relieve the need to check for a specific wall distance from
the mBot.

Dead-End Strategy

The strategy for handling dead ends is straight forward. Let’s walk through an example using
Figure 140.

Figure 140: Dead End Strategy

1. Wall detected in front of mBot

2. mBot executes a left turn but detects a wall

3. mBot executes a right turn but detects a wall

4. mBot executes a right turn but detects a wall

5. mBot executes a right turn

While there are many approaches to the dead-end strategy, such as using variables to keep track of
what walls were detected, this method keeps the program relatively simple.

Now that the challenges have been thought through, you are ready to move on to design.

130

Design
The flowchart for the program turns out to be much simpler than one might expect. Figure 141
depicts the design based on the analysis of the problem. The simplicity of the design is possible
because we are not tracking any variables for the walls or the path and are simply reacting to
pre-programmed patterns.

Figure 141: Flowchart for the A-Maze-ing Program

Note that the flowchart accounts for having the mBot wait until the button on it is pressed
before it begins movement. The flowchart also makes extensive use of on-page connectors to avoid a
spiderweb of overlapping lines.

131

Chapter 18 A-Maze-ing!

Program Code
Main Program

Figure 142: A-Maze-ing Main Program

After calling the Initialize block to set up variables and assign them their initial values, the program
uses the now-familiar wait until block to wait for a button press before beginning any movement.
From that point, the program enters a repeat until block that executes until it encounters a room
marked as the endpoint as indicated by both sets of sensors on the line following sensor being off of
the line.

Within this loop, the mBot begins by turning to the left to see if there is a wall. This may seem
odd at first, but the program makes no assumptions about the starting position or orientation of the

132

mBot.
If the mBot detects a wall, it will execute a right turn. If it does not detect a wall, the mBot will

execute a forward movement to go to the center of the next room. Note that the mBot will always
execute this type of forward movement if a wall is not detected.

This pattern is followed through the rest of the program. If the mBot is in a dead end, it will
execute a total of one left turn followed by three right turns to turn itself around. Upon locating an
opening, it will execute a forward movement, effectively backtracking the way it came.

Initialize
The Initialize block sets the center-to-center size of the rooms (RoomSize), the rate of travel
(CmPerSecond), and the power level (Speed) used by the mBot.

Figure 143: A-Maze-ing Initialization Block

Moving Forward Along the Line
The moveForward block calculates the duration of time that the motors should run to cover the
distance specified by the distance parameter. Next the timer is reset and the motors are set to run
forward at the speed set by the global variable Speed. The repeat until loop will execute until the
timer indicates that the Duration calculated earlier has been exceeded, at which point the motors
are turned off.

Within the loop, the block checks to see if the line sensor indicates that the mBot is veering off of
the line and makes an adjustment according to whether or not the mBot is veering left or right. If
the mBot line sensor indicates that the mBot is moving along the line, the motors continue to move
the mBot forward.

You should note that there is a subtraction of .15 from the CmPerSecond variable. This minor
adjustment is due to the inexact movement that results from timing errors. As previously mentioned,
the mBot uses toy gearmotors that are not encoded to provide precise movements, unlike stepper
motors. The .15 adjustment was arrived at through trial and error and may only apply to the mBot
and battery combination the author used for the program. You will need to experiment to find the
value that works best for your mBot.

133

Chapter 18 A-Maze-ing!

Figure 144: A-Maze-ing Move Forward Block

This program also uses a couple of helper functions that assist the mBot to stay on the line. They
give the mBot a slight “nudge” in the right direction by executing a short turn at a fraction of the
normal forward movement speed. To ensure that the overall forward movement time is not impacted,
these “nudges” will add back their time to the end time for the forward movement.

Figure 145: A-Maze-ing nudgeLeft and nudgeRight Blocks

Turning
The turnLeft and turnRight blocks are identical except for the direction of the turn. Both blocks use
a 0.25 second “bump” to get the sensors of the line following sensor off of the line before starting the
turn. This action ensures that the turn can happen without any issues. From that point, the block
uses a repeat until block that exits when both pairs of sensors on the line following sensor are over
the line and the motors stop. Until that point, the mBot keeps making its turn.

134

Figure 146: A-Maze-ing turnLeft and turnRight Blocks

Note that the stopMovement block only contains a run forward at zero speed block and is not
illustrated here.

Detecting the Wall

Figure 147: A-Maze-ing detectWall Block

The detectWall block is essentially the detectObject block from Chapter 16. However, you should
note that the .2 second settling time is added back to the duration so that the timing for movement
is not adversely affected.

Testing & Validation
This program involves a lot of movement and there will likely be additive errors due to the inaccuracies
associated with the control of the motors. Be prepared to test everything, but be smart about your
testing. For a program of this size, you will need to test each block before testing the entire program.

Test Procedure
1. Test moveForward block to ensure that accurate forward movements are occurring.

2. Test turnLeft/turnRight blocks to ensure that accurate turns are occurring.

135

Chapter 18 A-Maze-ing!

3. Test ability to stop at the designated endpoint of the maze.

4. Test main program to see if mBot is solving the maze.

Troubleshooting & Debugging
Let’s look at what might have potentially gone wrong by narrowing down the potential points of
failure into a checklist and work through them.

1. The mBlock IDE is not connected to the mBot

(a) Is the cable is connected to the mBot and the computer?
(b) Did you click the Connect menu item and choose the correct serial port?

2. The mBot runs backwards when I want it to go forward

(a) Switch the motor plugs on the mCore board.

3. The mBlock IDE cannot connect to the mBot

(a) Is the mBot turned on?
(b) Have you upgraded the firmware on the mBot from the Connect menu item?
(c) Did you install the Arduino driver for the mBot?

4. Compilation or Upload failed

(a) Did the program compile without any errors?
(b) Were you able to upload the program to the mBot?

5. There is an error in the program.

(a) Did you create the variables correctly?
(b) Did you initialize all of the variables?
(c) Did you use the proper comparison operators?
(d) Did you check that your program matches the one in Figures 142 - 146?

136

Chapter 19

You Made It!

Well, here we are at the end of the book and congratulations are in order. Whether you are a
complete novice to programming and robotics or an expert who has had the patience to work through
to the end, I want to thank you for coming on this journey.

It is important to realize that this is just a way station, not an endpoint for your journey into
robotics. You have had the opportunity to do some incredible things with the mBot and Scratch
and I hope that you will continue to build upon your experience by designing programs of your own
and posting them on the Makeblock forum or on YouTube for all to see. You can also extend the
capabilities of your mBot by purchasing additional modules from Makeblock.

In the next volume of the series, we will revisit many of the programs from this book but we will
be writing the programs in the native language of the Arduino, C/C++. While the language will
look different, you will be familiar with the concepts. You will also discover that there are many
more things that you can accomplish.

Regardless, I wish you well as you continue your journey!

137

You Made It!

138

Appendix A | Flowcharts

Flowcharting As A Design Tool
Flowcharts provide a visual map for your program logic. Why do them?

• Flowcharts allow you to map out the logic for your program before you write the code.

• Flowcharts help you to organize your thinking.

• Flowcharts help identify repeating logic that can be encapsulated in a custom block (also called
a function or method in other languages).

• Flowcharts allow you to quickly explain your program logic to others.

Flowcharting Symbols
Flowcharts use the following symbols:

Figure 148: Flowchart Symbols

139

Appendix A: Flowcharts

Flowcharting Connections
Flowcharts use lines to connect the symbols and arrowheads on the lines to indicate the direction of
program flow.

Figure 149: Flowchart Connections

140

Appendix B | mBot Blocks

The blocks described in this appendix appear when mBlock’s Board menu has the mBot selected.
If other boards are selected, such as the Orion board, many of the blocks shown here will not be
displayed.

Hat Blocks

The mBot Program block marks the beginning of a program
that can be compiled and run directly on the mBot.

The when button [event] is used to mark the beginning of a
subroutine when running the program from within mBlock.
This block does not generate code and will have no effect
when running the program directly on the mBot.
The events for this block are:

Event Description

pressed Button is currently pressed
released Button has been released

When running in the mBlock environment, this block will
execute its contents when the button is pressed or released
depending on the specified state. In some cases, you may
want to have subroutines tied to each of the states.

141

Appendix B: mBot Blocks

Event Blocks

The button [event] block is similar to the when button [event]
hat block. It will return a true or false value depending on
the state of the green button on the mBot and the type of
event you are using. The events for this block are:

Event Description

pressed Button is currently pressed
released Button has been released

Control blocks (if-then, if-then-else, etc.) use this block to
trigger the execution of the code contained within them.

The button on [port][key] pressed block is used by the four
button module sold by Makeblock. The block watches the
designated port and returns true if the selected button [1-4]
has been pressed.

The limit switch [port][slot] block tracks the current state
of an attached microswitch, returning true if the switch has
been activated and false if not activated. The port parameter
indicates the port where the switch is connected. The slot
parameter is used to designate which slot on the Me-RJ25
adapter is plugged into. This block is used by the control
blocks to determine whether or not to execute the code within
the control block.

The [ir remote [button] pressed block tracks the current status
of the selected button, returning true if the button has been
pressed or false if it has not. The button parameter supports
buttons 0-9, A-E, the arrow keys, and the settings button
(gear button). This block is used by the control blocks to
determine whether or not to execute the code within the
control block.

The touch sensor [port] block tracks the current status of a
touch sensor connected to the selected port returning true if
the touch sensor microswitch is closed and false if it is not.
This block is used by the control blocks to determine whether
or not to execute the code within the control block.

142

Reporter Blocks

The 3-axis gyro [axis] angle block returns the angle in
degrees for the specified axis (X/Y/Z).

The compass sensor [port] block will return a value in-
dicating the number of degrees of rotation from north
(north = 0).

The flame sensor [port] block returns a value from the
flame sensor. The block returns true if a flame has been
detected and false if a flame is not detected.

The gas sensor [port] block is used to measure concen-
tration of flammable gases. The block will return true if
a higher than normal concentration of flammable gases
is detected and false if it is not.

The humiture sensor [port][setting] returns the current
humidity level or the temperature based on the selected
setting. Temperature is return in degrees Celsius and
humidity is returned as a percentage.

The joystick [port][axis] block returns the position of
the joystick attached to the selected port. The axis
parameter may be set for the X-axis or the Y-axis and
will return values in the range -500 to 500. Negative
values for the X-axis indicate the joystick is left of center.
Negative values for the Y-axis indicate the joystick is
below center.

The light sensor [port] block returns the current light
level. The port setting may be light sensor on board for
the light sensor built into the mBot or to port 3 or 4 for
additional light sensors that may be attached. A zero
value represents absolute darkness and all greater values
indicate some degree of light.

143

Appendix B: mBot Blocks

The line follower [port] block returns a value based on
the status of the two pairs of infrared emitter/receivers.

Value Description

0 Both sensors on line
1 Left sensor on line
2 Right sensor on line
3 Both sensors off line

The port parameter indicates where the line following
sensor is attached.

The mBot’s message received block returns a string re-
ceived via the infrared receiver on the mBot.

The pir motion sensor [port] block is used to detect
changes in infrared radiation caused by a human or other
heat-emitting body. The block will return true if some-
thing is detected and false if it is not.

The potentiometer [port] block reports the current value
of the potentiometer module attached to the designated
port. The values will range from 0-1024.

The sound sensor [port] block returns the level of sound
detected. The port parameter identifies where the sound
sensor is installed.

The temperature [port] [slot] C° block returns the tem-
perature in Celsius as measured by the sensor. The port
parameter designates the port where the sensor is at-
tached, and the slot parameter designates the slot on the
Me-RJ25 adapter module where the sensor is attached.

The timer block returns a time based on the hardware
timer on the mCore board. This time is the number of
seconds elapsed in seconds since the mBot was turned
on.

The ultrasonic sensor [port] distance block returns the
distance in centimeters to the nearest detected object. As
of mBlock 3.3.5, the sensor returns 400 if it cannot detect
anything. Earlier verisons returned a zero if nothing was
detected.

144

Stacking Blocks

The [direction] at speed [power level] block
controls the direction and speed of the mBot
motors. The direction parameter determines
whether the mBot is moving forward, back-
ward, or turning left or right at the rate indi-
cated by the power level parameter.
A positive power level will cause the mBot to
move forward. A negative value will cause the
mBot to move backwards.
The turns use a tank-style turn that negates
the power level value for the inner wheel on a
turn while applying the same positive power
level to the outer wheel.

The play tone on note [frequency] beat [dura-
tion] block plays the specified frequency for
the listed duration. See Appendix D: Musi-
cal Note Values for a list of the available note
frequencies.
The duration has the following default values
although you are free to type the value of the
desired frequency directly into the parameter
slot.

Label Length

Zero 0 ms
Eighth 125 ms
Quater 250 ms
Half 500 ms
Whole 1000 ms
Double 2000 ms

The reset timer block sets the internal counter
to the current time of the hardware timer.

The send mBot’s message [string] block sends
the string over the infrared transmitter.

The set 7-segments display [port] number
[value] block enables the display of a number
to a 7-segment display attached to the port
designated by the port value. The range for
the displayable numbers are -999.5 through
9999.5.

145

Appendix B: mBot Blocks

The set camera shutter [port] as [state] block
enables a program to control the camera mod-
ule on the port specified by the port parameter.
This block has the following states:

Value Description

Press Open camera shutter
Release Close camera shutter
Focus On Activate focus
Focus Off Deactivate focus

The set led [port][device] red [rvalue] blue
[bvalue] green [gvalue] block enables a program
to turn LEDs on or off in a variety of colors.
The onboard LEDs for the mBot are address-
able by setting the port parameter to led on
board. LEDs connected to other ports may be
addressed by specifying the port where those
devices are connected.
The device parameter enables the selection of
one or more LEDs to control. If the parameter
is set to all, then the command will be sent
to all connected LEDs on the specified port.
The program can also specify a specific LED
to control.
The colors are defined by a combination of red-
green-blue (RGB) values where each individual
value can range from 0-255. Setting all values
to zero results in black, effectively turning the
LEDs off. Likewise, setting all values to 255
results in a white color.

The set led strip [port][slot][device] red [rvalue]
blue [bvalue] green [gvalue] block enables a pro-
gram to control the LEDs on an LED strip
attached to the port specified by the port vari-
able. The slot parameter refers to the slot on
the Me-RJ25 adapter module where the LED
strip is attached.
The device parameter enables the select of one
or more LEDs to receive the command.
As with the set led block, the colors are defined
using RGB values, with all zeroes turning off
the LED or LEDs.

146

The set light sensor [port] led as [state] block
enables the program to turn the LED of an
off-board light sensor on and off. This block
does not interact with the mCore onboard light
sensor. The port parameter specifies the port
where the light sensor connects to the mCore
board.

The set motor [motor] speed [power level] block
enables a program to have control over each
of the mBot’s motors. The motor parameter
specifies which motor will be affected and the
power level parameter determines the speed
and direction that the motor will turn.
Note that a positive number will make the
motor move in a forward direction and a neg-
ative number will make the motor move in a
backward direction.

The set servo [port][slot] angle [value] block
enables a program to control the movement
of a servo connected to the mBot on the port
designated by the port parameter.
The slot refers to the slot on the Me-
RJ25 adapter module where the servo is at-
tached. The angle value accepts a range of
0-180 degrees which corresponds to most non-
continuous servos.

147

Appendix B: mBot Blocks

The show drawing [port] x: [xvalue] y: [yvalue]
draw [] block enables a program to display a
drawing on the faceplate add-on module.
The port value defines where the faceplate is
connected to the mBot.
The X/Y coordinates (xvalue and yvalue] deter-
mine the upper left hand corner of the drawing
on the faceplate.
The input slot after draw: brings up a dialog
that allows the developer to create a drawing
by setting/unsetting blocks on the dialog.

The show face [port] x: [xvalue] y: [yvalue]
characters: [string] block enables a program
to display letters or numbers on the add-on
faceplate display. The port parameter specifies
where the faceplate display is connected to the
mBot. The X/Y values determine the upper
left corner where the contents of the string
parameter will be displayed.

The show time [port] hour: [hour] [separator]
min: [minutes] block enables a program to dis-
play the time on the add-on faceplate module.
The port parameter specifies where the face-
plate is connected to the mBot. The hour and
minutes values are used to display the time
and the separator allows the program to insert
a colon, space, or other separator between the
hours and minutes.

The stop tone block turns off the buzzer on
the mBot. With the advent of the play tone
on note block, the stop tone has less use and
may be deprecated in the future for the mBot
portion of the Robots palette.

148

Appendix C | Best Practices

This appendix contains a brief list of best practices that will assist in creating solid programs. The
biggest key to success, however, is consistency. Consistency in each step of the process will ensure
that your software development occurs in an orderly, least time-consuming fashion.

Process
1. Make sure that you have a clear understanding of the problem to be solved.

2. Make sure that you have a consistent process that you are following consistently.

3. Keep a journal that captures your thoughts and discoveries over the course of the project.

4. Be sure to review your journal after the project is over to see if there are ways to do things
better on the next project.

Requirements
1. Make sure that each requirement covers one thing that can be tested. If you discover that you

have a requirement that is doing multiple things, break it up into smaller chunks that can be
tested.

2. Be precise in your wording.

Analysis
1. Take the time to carefully read the requirements.

2. Make sure that you understand the problem to be solved.

3. Identify all of the internal and external dependencies and relationships for the problem you are
solving.

Design
1. Design in the big (top-down) for the initial cut.

2. Design in the small (bottom-up) for the next cut.

3. Always break large problems down into smaller ones.

4. Make sure that each custom block does one thing.

5. Be thinking about how each custom block can be tested

149

Appendix C: Best Practices

6. Take the time to make diagrams to walk through your design.

7. Explain your design to someone else to see if they can see something you can’t.

8. Be consistent in your naming practices.

Implementation
1. Be sure to use an initialization block for all initializations.

2. Don’t Repeat Yourself (DRY). If you are repeating the same code in many places, you may
want to put it into it’s own custom block.

3. If you find that you are repeatedly recreating the same blocks consider building a template
project (called a library in other languages) with all of the blocks

4. Use the simplest possible way to achieve the desired functionality.

5. Use comments to convey intent or complicated details.

Testing
1. Always test the golden path to ensure the desired functionality works under normal circum-

stances.

2. Test as many side cases as possible.

3. Automate testing where possible.

150

Appendix D | Musical Note Values

Note Value Note Value Note Value Note Value
B0 31 A2 110 G4 392 F6 1397
C1 33 B2 123 A4 440 G6 1568
D1 37 C3 131 B4 494 A6 1760
E1 41 D3 147 C5 523 B6 1976
F1 44 E3 165 D5 587 C7 2093
G1 49 F3 175 E5 659 D7 2349
A1 55 G3 196 F5 698 E7 2637
B1 62 A3 220 G5 784 F7 2794
C2 65 B3 247 A5 880 G7 3136
D2 73 C4 262 B5 988 A7 3520
E2 82 D4 294 C6 1047 B7 3951
F2 87 E4 330 D6 1175 C8 4186
G2 98 F4 349 E6 1319 D8 4699

151

Appendix D: Musical Note Values

152

Appendix E | Arduino Uno Specifications

The Makeblock mCore board for the mBot is based on the Arduino Uno25.

Figure 150: Arduino Uno Specifications

25http://goo.gl/VcV68F

153

http://goo.gl/VcV68F

Appendix E: Arduino Uno Specifications

154

Appendix F | Resources

Books

Scratch-related Books

Learn to Program with Scratch by Majed Marji

mBlock Kids Maker Rocks with the Robots link

Scratch 2.0 - The Adventures of Mike link

Scratch Programming in easy steps by Sean McManus

Super Scratch Programming Adventure! by the LEAD Project

Robotics-related Books

The Robotics Primer by Maja J. Matarić

Web Sites

Makeblock Forums link
mBot Introduction link to Makeblock Learn site
Official Scratch Site link
Scratch Resources link
Scratch Wiki link
Redware link
YouTube link to Scratch videos

link to mBot videos

155

https://www.dropbox.com/s/3dwpdyt1ygrpi3t/mBlock%20Kids%20maker%20rocks%20with%20the%20robots.pdf?dl=0)
https://www.dropbox.com/s/3v2w8wnym9aubnf/Scratch%202.0%20The%20Adventures%20of%20Mike.pdf?dl=0)
http://forum.makeblock.cc
http://learn.makeblock.com/mbot-an-educational-stem-robot-for-kids-and-beginners/
http://scratch.mit.edu
http://scratch.ie
http://wiki.scratch.mit.edu
http://scratch.redware.com
https://www.youtube.com/results?search_query=scratch+programming
https://www.youtube.com/results?search_query=mbot+programming

Appendix F: Online Resources

Materials

Degree Wheel

Figure 151: Degree Wheel

156

Movement Table

Power 1 sec 2 sec 3 sec 4 sec 5 sec Mean
100
125
150
175
200
225
250

360° Turn Table

Power Time
100
125
150
175
200
250

157

	Contents
	Acknowledgments
	Preface
	Robots All Around Us
	What is a Robot?
	What is Robotics?
	Why Is Robotics Important?
	Why This Book?

	 1 Getting Set Up
	Before You Start
	Installing the Arduino Driver
	What is an mBot?
	Building the mBot
	Connecting Power
	Connecting to the mBot
	Connecting to the mBlock Environment

	 2 The Software Development Process
	Requirements
	Analysis
	Design
	Implementation
	Testing & Debugging

	 3 Programming Guidelines
	Naming Conventions
	Valid Characters
	Snake-Case vs. Camel-Case
	Design First
	Breaking Down the Boulders
	Do One Thing Well
	Flowcharting, Pseudocode, and Design
	Pseudo-Coding
	Test, Test, Test!

	 4 The mBlock Programming Environment
	mBlock and Scratch
	A Quick Tour of mBlock
	All Scratch Blocks Are Not Supported in mBot Programs
	Arduino Mode
	Editing with Arduino IDE
	Block Palettes
	Control Palette
	Data & Blocks Palette
	Operators Palette
	Robots Palette

	 5 Blinking LEDs
	Program Description
	Requirements
	Analysis
	Design
	Program Code
	Testing and Validation
	Troubleshooting and Debugging
	Challenges

	 6 Play an Octave
	Program Description
	Requirements
	Analysis
	Design
	Program Code
	Testing & Validation
	Troubleshooting and Debugging
	Challenges

	 7 Press the Button
	Program Description
	Requirements
	Analysis
	Design
	Program Code
	Testing & Validation
	Troubleshooting & Debugging
	Challenges

	 8 Light It Up!
	Program Description
	Requirements
	Analysis
	Design
	Program Code
	Testing & Validation
	Troubleshooting & Debugging
	Challenges

	 9 Ultrasonic Theremin
	Program Description
	Requirements
	Analysis
	Design
	Program Code
	Testing & Validation
	Troubleshooting & Debugging
	Challenges

	10 Baby You Can Drive My Bot
	Program Description
	Requirements
	Analysis
	Design
	Program Code
	Testing & Validation
	Troubleshooting & Debugging
	Challenges

	11 Where's My Line?
	Program Description
	Requirements
	Analysis
	Design
	Program Code
	Testing & Validation
	Troubleshooting & Debugging
	Challenges

	12 Robotic Movement Part 1
	Controlling Robotic Movement
	Thinking Like an Engineer
	Program Description
	Requirements
	Analysis
	Design
	Program Code
	Testing & Validation
	Challenges

	13 We Like to Move It!
	Program Description
	Requirements
	Analysis
	Design
	Program Code
	Testing & Validation
	Troubleshooting & Debugging
	Challenges

	14 Robotic Movement Part 2
	Program Description
	Requirements
	Analysis
	Design
	Program Code
	Testing & Validation

	15 Trace A Shape
	Program Description
	Requirements
	Analysis
	Design
	Program Code
	Testing & Validation
	Troubleshooting & Debugging
	Challenges

	16 Obstacle Avoidance
	Program Description
	Requirements
	Analysis
	Design
	Program Code
	Testing & Validation
	Troubleshooting & Debugging
	Challenges

	17 Bashin' at the Basho
	Program Description
	Requirements
	Analysis
	Design
	Program Code
	Testing & Validation
	Troubleshooting & Debugging
	Challenges

	18 A-Maze-ing
	Program Description
	Requirements
	Analysis
	Design
	Program Code
	Testing & Validation
	Troubleshooting & Debugging

	19 You Made It!
	Appendix A: Flowcharts
	Appendix B: mBot Blocks
	Appendix C: Best Practices
	Process
	Requirements
	Analysis
	Analysis
	Implementation
	Testing

	Appendix D: Musical Note Values
	Appendix E: Arduino Uno Specifications
	Appendix F: Resources
	book_cover

