
Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Thrtle Geometry

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

The MIT Press Series in Artificial Intelligence

Artificial Intelligence: An MIT Perspective, Volume I: Expert Problem
Solving, Natural Language Understanding, Intelligent Computer Coaches,
Representation and Learning, edited by Patrick Henry Winston and
Richard Henry Brown, 1979

Artificial Intelligence: An MIT Perspective, Volume H: Understanding
Vision, Manipulation, Computer Design, Symbol Manipulation, edited
by Patrick Henry Winston and Richard Henry Brown, 1979

NETL: A System for Representing and Using Real-World Knowledge,
by Scott Fahiman, 1979

The Interpretation of Visual Motion, by Shimon Uliman, 1979

A Theory of Syntactic Recognition for Natural Language, by Mitchell
P. Marcus, 1980

Turtle Geometry: The Computer as a Medium for Exploring Mathematics,
by Harold Abelson and Andrea A. diSessa, 1981.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Turtle Geometry

The Computer as a Medium for Exploring Mathematics

Harold Abelson

Andrea A. diSessa

The MIT Press
Cambridge, Massachusetts
London, England

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

First MIT Press paperback edition, 1986

© 1980 by The Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any
form or by any means, electronic or mechanical, including photocopying,
recording, or by any information storage and retrieval system, without
permission in writing from the publisher.

This book was set using the ThjX typesetting system by Michael Sannella
and printed and bound by Halliday Lithograph in the United States of
America.

Library of Congress Cataloging in Publication Data
Abelson, Harold.

Turtle geometry.
(The ÌvllT Press series in artificial intelligence)
Includes index.
1. GeometryStudy and teaching. 2. Computer-

assisted instruction. I. DiSessa, Andrea, joint author.
H. Title. 111. Series: N'IIT Press series in
artificial intelligence.
QA462.A23 1981 516'.007'8 80-25620

ISBN 978-O-262-01063-4 (hardcover: alk. paper) 978-0-262-51037-0 (paperback

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Contents

Preface xiii
Acknowledgments xvii
Preliminary Notes xix

i Introduction to Turtle Geometry 3

1.1 Turtle Graphics 3

1.1.1 Procedures 5

1.1.2 Drawing with the Turtle 7

1.1.3 Turtle Geometry versus Coordinate Geometry 11

1.1.4 Some Simple Turtle Programs 15

Exercises for Section 1.1 21

1.2 POLYs and Other Closed Paths 23

1.2.1 The Closed-Path Theorem and the Simple-Closed-Path
Theorem 23

1.2.2 The POLY Closing Theorem 26

Exercises for Section 1.2 30

1.3 Looping Programs 32

1.3.1 The Looping Lemma 33

1.3.2 Examp1e of Looping Programs 36

1.3.3 More on the Looping Lemma 39

1.3.4 Technical Summary 40

1.3.5 Nontechnical Summary 41

Exercises for Section 1.3 41

1.4 Symmetry of Looping Programs 43

1.4.1 The Symmetry of POLY 44

1.4.2 Common Divisors 46

Exercises for Section 1.4 50

2 Feedback, Growth, and Form 55

2.1 The Turtle as Animal 55

2.1.1 Random Motion 56

2.1.2 Directed Motion: Modeling Smell 59

2.1.3 Modeling Sight 62

Exercises for Section 2.1 67

2.2 Turtles Interacting 70

2.2.1 Predator and Prey 70

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

vi Contents

2.2.2 Following and Chasing 72

Exercises for Section 2.2 75

2.3 Growth 77

2.3.1 Equiangular Spirals 77

2.3.2 Branching Processes: A Lesson in Recursion 81

Exercises for Section 2.3 85

2.4 Recursive Designs 87

2.4.1 Nested Triangles 87

2.4.2 Snowflakes and Other Curves 91

2.4.3 Space-Filling Designs 94

Exercises for Section 2.4 99

3 Vector Methods in Turtle Geometry 105

3.1 Vector Analysis of Turtle Programs 106

3.1.1 Vector Operations: Scalar Multiplication and Addition 108
3.1.2 Vector Representations of Closed Paths 109
3.1.3 POLY Revisited: Rotations and Linearity 110

3.1.4 MULTIPOLYs: Another Application of Vector Analysis 114

3.1.5 Unexpectedly Closed Figures 120

Exercises for Section 3.1 125

3.2 Coordinates for Vectors 129

3.2.1 Vector Operations in Coordinates 130
3.2.2 Rotation in Coordinates: The Linearity Principle 132

Exercises for Section 3.2 135

3.3 Implementing Turtle Vector Graphics on a Computer 136

3.3.1 Turtle State 136

3.3.2 State-Change Operators 137

Summary: A Vector-Based Turtle Implementation 138

Exercises for Section 3.3 138

3.4 Maneuvering a Three-Dimensional Turtle 140

3.4.1 Rotating the Turtle 140

3.4.2 Rotation Out of the Plane 142

3.4.3 The State-Change Operators, in Summary 144

3.5 Displaying a Three-Dimensional Turtle 144

3.5.1 Parallel Projection 145

3.5.2 Dot Product: Another Application of Linearity 148

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Contents vii

3.5.3 Parallel Projection in Coordinates; Generalizations 150
3.5.4 Perspective Projection 151

3.5.5 Outline of a Three-Dimensional Turtle Project 153
Exercises for Section 3.5 155

4 Topology of Turtle Paths 161

4.1 Deformations of Closed Paths 161

4.1.1 Turtle Paths: Pictures and Programs 163
4.1.2 Correlating Pictures and Programs 165

4.1.3 Topological Classification of Closed Paths 166

Exercises for Section 4.1 167

4.2 Local and Global Information 175

4.2.1 Escaping From a Maze 176

Exercises for Section 4.2 179

4.3 Deformations of Curves and Planes 180

4.3.1 Proof of the Deformation Theorem 183

Exercises for Section 4.3 188

4.4 Correctness of the Pledge Algorithm 191

4.4.1 Unfair Mazes 192

4.4.2 The Body of the Proof 193

4.4.3 Looping and Finite-State Processes 196

Exercises for Section 4.4 198

5 Turtle Escapes the Plane 201

5.1 Turtle Geometry on a Sphere 201

5.1.1 Turtle Lines 202

5.1.2 Turtle Turning and Trip Turning 205

5.1.3 Angle Excess 207

5.1.4. Excess is Additive 209

5.1.5 Excess and Area 211

Exercises for Section 5.1 213

5.2 Curvature 214

5.2.1 Curvature Density 215
5.2.2 Total Curvature 217

5.2.3 Cylinders 219

.5.2.4 Cones 221

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

viii Contents

5.2.5 Curvature for Curves and Surfaces 223
Exercises for Section 5.2 224

5.3 Total Curvature and Topology 227

5.3.1 Dents and Bends 228

5.3.2 Concentrated Curvature 231

5.3.3 Cutting and Pasting 232

Exercises for Section 5.3 235

6 Exploring the Cube 241

6.1 A Computer Cube 244

6.1.1 Internal Representation 244

6.1.2 Permutations 248

6.1.3 Crossing Edges Using Dot Product 249

6.1.4 Implementing the State-Change Operators 252

6.1.5 Displaying the Cube; Capitalizing on Linearity 253
6.1.6 Summary Outline of the Cube Program 257
6.1.7 Comments on the Cube Program 258

Exercises for Section 6.1 261

6.2 Observations and Questions About Cubes 262

6.2.1 Monogons 262
6.2.2 POLY 264
6.2.3 Other Gons 264
6.2.4 Lines and Distance 265

6.2.5 More Projects 265
6.2.6 Things to Think About 267

6.3 Results 268

6.3.1 The Monogon Problem 268

6.3.2 Headings for Monogons 272

6.3.3 POLYs and Other Looping Programs 274

6.3.4 Another Representation 276

6.3.5 Another Representation Revisited 276

6.3.6 More Distance 277

6.4 Conclusion 278

7 A Second Look at the Sphere 279

7.1 A Computer Simulation 279

7.1.1 Internal Representation 280

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Contents ix

7.1.2 Display 282

7.1.3 Distances and Angles 283

7.2 Exploring 283

7.2.1 POLY 283

7.2.2 Symmetry Types 284

7.2,3 Circles 285

7.2.4 Distances 285

7.2.5 Two New Views of Sphere 285

7.3 Results 287

7.3.1 The FORWARD-LEFT Symmetry 287

7.3.2 Net Rotation of a POLY Step 289

7.3.3 The Spherical Pythagorean Theorem 291

7.3.4 Exact Formula for 0 292
7.3.5 Results for Circles 295

7.3.6 Proof of Net Rotation Theorem 298

Exercises for Chapter 7 301

8 Piecewise Flat Surfaces 305

8.1 A Program for Piecewise Flat Surfaces 307

8.1.1 Internal Representation 308
8.1.2 Maintaining the Display 309
8.1.3 Implementing the FORWARD Command 312
8.1.4 Starting to Explore: Surfaces with Only One Face 316
Exercises for Section 8.1 320

8.2 Orientations 323

8.2.1 Nonorientable Surfaces 323
8.2.2 A Program for Nonorientable Surfaces 328
Exercises for Section 8.2 330

8.3 Curvature and Euler Characteristic 331

8.3.1 Curvature of Piecewise Flat Surfaces 331

8.3.2 Euler Characteristic 334

Exercises for Section 8.3 338

9 Curved Space and General Relativity 343

9.1 Wedge Representations 343

9.1.1 A Parable: At the Edge of a Wedge 343

9.1.2 Symmetric Wedge Maps 347

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

x Contents

9.1.3 A Computer Simulation 353
Exercises for Section 9.1 355

9.2 Phenomena of Curved Space and Time 359

9.2.1 Curved Space 359

9.2.2 Curved Spacetime 363

9.2.3 The Four Curvature Effects 368

Exercises for Section 9.2 370

9.3 The General Theory of Relativity 372

9.3.1 Gravity as Curvature 373
9.3.2 Rotating World Lines 373

9.3.3 Understanding Lorentz Rotations 377
Exercises for Section 9.3 378

9.4 A Simulator for General Relativity 381

9.4.1 The Coordinate Systems 382

9.4.2 Thrning and Leaping 384
9.4.3 The Program 384
9.4.4 Help with Units 386
Exercises for Section 9.4 387

Appendix A: Thrtle Procedure Notation 393
Appendix B: Writing Thrtle Programs in Conventional Computer
Languages 405
Hints for Selected Exercises 423

Answers to Selected Exercises 439
Index 471

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Series Foreword

Artificial intelligence is the study of intelligence using the ideas and
methods of computation. Unfortunately, a definition of intelligence
seems impossible at the moment because intelligence appears to be an
amalgam of so many information-processing and information-represen-
tation abilities.

Of course psychology, philosophy, linguistics, and related disciplines
offer various perspectives and methodologies for studying intelligence.
For the most part, however, the theories proposed in these fields are too
incomplete and too vaguely stated to be realized in computational terms.
Something more is needed, even though valuable ideas, relationships,
and constraints can be gleaned from traditional studies of what are,
after all, impressive existence proofs that intelligence is possible.

Artificial intelligence offers a new perspective and a new methodology.
Its central goal is to make computers intelligent, both to make them more
useful and to understand the principles that make intelligence possible.
That intelligent computers will be extremely useful is obvious. The
more profound point is that artificial intelligence aims to understand
intelligence using the ideas and methods of computation, thus offering
a radically new and different basis for timory formation. Most of the
people working in artificial intelligence believe that these theories will
apply to any intelligent information processor, whether biological or solid
state.

There are side effects that deserve attention, too. Any program that
will successfully model even a small part of intelligence will be inherently
massive and complex. Consequently, artificial intelligence continually
confronts the limits of computer technology. The problems encountered
have been hard enough and interesting enough to seduce artificial intel-
ligence people into working on them with enthusiasm. It is natural, then,
that there has been a steady flow of ideas from artificial intelligence to
computer science, and the flow shows no signs of abating.

The purpose of this IvilT Press Series in Artificial Intelligence is to
provide people in many areas, both professionals and students, with
timely, detailed information abôut what is happening on the frontiers in
research centers all over the world.

Patrick Henry Winston
Mike Brady

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Preface

Some mathematician, I believe, has said that true
pleasure lies not in the discovery of truth, but in
the search for it.
Tolstoy, Anna Karenina

Five centuries ago the printing press sparked a radical reshaping of
the nature of education. By bringing a master's words to those who
could not hear a master's voice, the technology of printing dissolved
the notion that education must be reserved for those with the means
to hire personal tutors. Today we are approaching a new technological
revolution, one whose impact on education may be as far-reaching as
that of the printing press: the emergence of powerful computers that
are sufficiently inexpensive to be used by students for learning, play,
and exploration. It is our hope that these powerful but simple tools for
creating and exploring richly interactive environments will dissolve the
barriers to the production of knowledge as the printing press dissolved
barriers to its transmission.

This hope is more than our wish for students to experience the joy of
discovery and the give and take between investigator and investigation
that typifies scientific research. Like Piaget, Dewey, and Montessori, we
are convinced that personal involvement and agency are essential to truly
effective education. Yet much of almost any mathematics curriculum is
devoted to practicing rote algorithms and rehashing ancient theorems.
It is the rare student who gets the chance to approach mathematics
by doing it rather than only learning about it, by investigating new
phenomena, by formulating original hypotheses, or by proving original
theorems. Computationespecially the activity of programingcan
offer many opportunities for students to engage in such activities without
first having to master a formidable apparatus. We hope to demonstrate
how a computational approach can change the relation between the
students and the mathematical knowledge.

Experience is an important ingredient in discovery. The abundance
of the phenomena students can investigate on their own with the aid
of computer models shows that computers can foster a style of educa-
tion where "learning through discovery" becomes more than just a well-
intentioned phrase. Computers can bring to learning the essential ele-
ment of surprise, for despite the popular belief that a computer can
never surprise its programer since it does only what it was programed to

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

xiv Preface

do, even very simple algorithms can and often do produce unexpected
and striking results. Encountering one of these results, studying it, and
understanding how it comes about can be an open-ended adventure very
different from most of the "discovery methods" in teaching, in which the
teacher knows beforehand precisely what is supposed to be "discovered."

This book is a computer-based introduction to geometry and advanced
mathematics at the high school or undergraduate level. Besides altering
the form of a student's encounter with mathematics, we wish to em-
phasize the role of computation in changing the nature of the content
that is taught under the rubric of mathematics. We wish to demonstrate
a curriculum that shows the computational influence in its choice of
ideas as well as in its choice of activities. Some of the major themes
of the book illustrate the point: representation, local-global dichotomy,
linearity, state and state-change operators. Most important in this en-
deavor is the expression of mathematical concepts in terms of construc-
tive, process-oriented formulations, which can often be more assimilable
and more in tune with intuitive modes of thought than the axiomatic-
dedúctive formalisms in which these concepts are usually couched. As
a consequence we are able to help students attain a working knowledge
of concepts such as topological invariance and intrinsic curvature, which
are usually reserved for much more advanced courses.

Chapter 1 shows how to regard plane-geometric figures not as static
entities but as tracings made on a display screen by a computer-controlled
"turtle" whose movements can be described by suitable computer pro-
grams. Even very simple programs produce geometric designs whose
surprising symmetry and regularity provoke investigations in geometry
and number theory. Chapter 2 illustrates how endowing the turtle with
senses of "sight" and "smell" or modeling patterns of growth in shells and
trees can serve as a springboard for forays into mathematical biology.
Chapter 3 compares turtle methods and coordinate methods for drawing
on the display screen, both for two-dimensional figures and for three-
dimensional figures shown in perspective. This not only explains how
to implement turtle graphics using traditional programing languages,
but also illustrates the clarifying power of linearity and vector repre-
sentations. Chapter 4 discusses the topology of curves in the plane and
applies topological principles to the design of an algorithm that enables
the turtle to escape from any maze.

Chapter 5 frees the turtle from confinement to the flat plane and
presents a turtle's-eye view of the geometry of curved surfaces. This
perspective is applied in chapters 6, 7, and 8, where extending the

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Preface xv

two-dimensional computer display to simulate drawing on the surface
of a cube, a sphere, and beyond highlights the importance of some of
the central ideas iii modern mathematics: linearity, symmetry groups,
and invariance. As a bonus these surfaces disclose rich new worlds of
"nonfiat" geometric phenomena to explore. In chapter 9 this computa-
tional exploration of curved surfaces provides a conceptual framework
for studying Einstein's General Theory of Relativity and for developing
a computer program that simulates the motion of particles in a gravita-
tional field as predicted by the theory.

This material was created during the past ten years at the Massachu-
setts Institute of Technology, and has been used by MIT undergraduates
in courses and seminars in the Department of Mathematics and the
Division for Study and Research in Education, and by high school
juniors in summer institutes sponsored by the MIT Artificial Intelligence
Laboratory and the National Science Foundation. The projects can
serve as the basis for a computer mathematics laboratory, introduce the
geometry and topology of curves and surfaces, and, most important,
provide an opportunity for students at the high school or undergraduate
level to engage in genuine and significant mathematical discovery. Many
parts of the book can be used by students equipped with only paper and
pencil, but the contents will be most useful to those who have access to
interactive computer graphics.

Although our book is addressed to students, we would also like to
reach two other audiences: those mathematics educators who are con-
sidering using computers in their teaching but are unsatisfied with the
superficial computer-directed instruction and the "insert parameter, see
result" simulations that have been predominant modes of computer use
in education, and those educators and shapers of educational policy who
are trying to find more productive images of the role of computation in
reforming both the style and the content of curriculum. The computer
will have a profound impact on our educational system, but whether it
will enrich the lives of students will depend upon our insight and our
imagination.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Acknowledgments

Thrtle geometry has grown out of work with the many students, from
preschool to postdoctoral, who have worked with the materials developed
by the Logo Group of the ÌvllT Artificial Intelligence Laboratory since
1970. Anyone familiar with this work will recognize the enormous debt
we owe to Seymour Papert, director of the Logo Group, who not only
initiated work on turtle geometry, but also authored a broad vision of
the use of computers in education that nurtured its growth.

This book was written under the aegis of the MIT Division for Study
and Research in Education, an organization that is almost unique in
viewing education research as, at once, an enterprise in teaching, cogni-
tive studies, science, mathematics, and technological innovation. This
kind of perspective is, we believe, a prerequisite to the development
of any educational technology that will be more than old wine in new
bottles. We also owe a great deal to the Artificial Intelligence Laboratory
as a whole, for without its computational support this work would have
been impossible. More than that, its spirit of playful innovation along
with serious concern for the way people think and learn was the rich soil
in which these ideas germinated.

We thank the following people for their comments on drafts: John
Berlow, Alfred fork, Mike Brady, Gerhard Fischer, Ken Kahn, Seymour
Papert, Howard Peelle, Radia Perlman, Neil Rowe, Bertrand Schwartz,
and our students. For suggesting approaches, xamples, and exercises we
thank Bonnie Dalzell, Paul Goldenburg, Ira Goldstein, Nat Goodman,
Andrew Gratz, Ellen Hildreth, Doug Hill, Glenn Iba, Kenneth Kahn,
Henry Lieberman, Seymour Papert, David Roberts, and Neil Rowe.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Preliminary Notes

This is a book about exploring mathematics, and the most important
thing about exploring mathematics is for you to do it rather than just
passively read what we've written. Many of the sections (in particular
chapter 2, the latter part of chapter 3, and chapters 6 through 9) contain
extended descriptions of computer projects for you to implement and
investigate. Additional open-ended projects, indicated with a [P], are
listed with the exercises at the end of each section. In the text and
exercises we have taken pains to show both the breadth and the depth
of possible work with turtle geometry. What is most encouraging to
us, however, is that we are certain that we have only scratched the
surface. So do not hesitate to depart from the problems and projects
we've included in order to follow your own ideas.

The computer used to undertake these projects must be capable of
producing drawings in response to "turtle graphics" commands. For-
tunately, most computer graphics systems can be readily adapted to
execute turtle commands. A detailed explanation of how to do this is
given in chapter 3, and appendix B includes a typical implementation of
turtle commands in BASIC. In addition, there are (as of January 1981) a
few commercially available computer systems that have turtle graphics
built in. The most widespread of these is the Pascal system for the
Apple II. (See appendix B for others.)

In writing a book about computer graphics projects we had to select a
notation in which to describe the algorithms. Using a standard program-
ing language such as BASIC would have forced us to specify numerous
implementation-dependent "computerish" details, which would have ob-
scured the simplicity of the programs Our response was to choose a
notation in which turtle algorithms can be expressed simply, and yet
which is close enough to real programing languages so that you should
have little troubling translating our programs into the language of your
choice. In fact, our notation is quite similar to the programing language
Pascal (if one ignores details about declaring variables and data types),
and even closer to Logo, a language developed at MIT especially for this
kind of educational use. Appendix A provides details on our "computer
language" notation, and appendix B illustrates sample turtle programs
translated into standard programing languages.

Besides computer projects, we've included numerous exercises to test
understanding, suggest inquiry, or just pique the imagination. These
range in scope from simple problems to extended research topics. The
more difficult ones are indicated with a [D]. There are also a few
problems marked [DD]. If you tackle one of them, be prepared for a real

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

xx Preliminary Notes

challenge. We've provided two separate answer sections, one of hints
and one of more complete answers; exercises are marked with [H}, [AI,
or [HAJ, depending on whether we've furnished a hint, an answer, or
both. If you get stuck on an [HAI exercise, try working with the hint
before looking up the answer.

You should not feel constrained to read this book straight through.
Indeed, we hope even casual readers will sample various sections, digging
into what they find most interesting. The closest things to prerequisites
for later chapters are as follows: The first few sections of chapter 1
introduce the basics of turtles and turtle geometry. Chapter 3 contains
the most essential technical material, vectors and coordinate methods,
which we use freely in explanations and programs in later chapters.
Chapter 5 broaches the new area of nonflat geometries, which will occupy
the rest of the book, but even here only the most general notions are
necessary to proceed. By and large we have placed the most important
material toward the beginnings of chapters and sections.

The tradition of calling our display creatures "turtles" started with
Grey Walter, a neurophysiologist who experimented in Britain during
the early 1980s with tiny robot creatures he called "tortoises." These
inspired the first turtles designed at MITcomputer-controlled robots
that moved around on the floor in response to the commands FORWARD
and RIGHT. Work in the present mathematical and computer-graphics
context followed directly and inherited the turtle terminology.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Turtle Geometry

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Introduction to Turtle Geometry

We start with the simplest vocabulary of images,
with "left" and "right" and "one, two, three," and
before we know how it happened the words and
numbers have conspired to make a match with
nature: we catch in them the pattern of mind and
matter as one.

Jacob Bronowski, The Reach of Imagination

This chapter is an introduction on three levels. First, we introduce you
to a new kind of geometry called turtle geometry. The most important
thing to remember about turtle geometry is that it is a mathematics
designed for exploration, not just for presenting theorems and proofs.
When we do state and prove theorems, we are trying to help you to
generate new ideas and to think about and understand the phenomena
you discover.

The technical language of this geometry is our second priority. This
may look as if we're describing a computer language, but our real aim is
to establish a notation for the range of complicated things a turtle can
do in terms of the simplest things it knows. If you wish to actually pro-
gram a computer-controlled turtle using one of the standard programing
languages, you will need to know more details than are presented here;
see appendixes A and B.

Finally, this chapter will introduce some of the important themes
to be elaborated in later chapters. These themes permeate not oniy
geometry but all of mathematics, and we aim to give you rich and varied
experiences with them.

1.1 Turtle Graphics

Imagine that you have control of a little creature called a turtle that
exists in a mathematical plane or, better yet, on a computer display
screen. The turtle can respond to a few simple commands: FORWARD

moves the turtle, in the direction it is facing, some number of units.
RIGHT rotates it in place, clockwise, some number of degrees. BACK

and LEFT cause the opposite movements. The number that goes with a
command to specify how much to move is called the command's input.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

4 Introduction

A
(a) Turtle starts (b) FORWARD loo

(e) RIGHT 90 (d) FORWARD 150
LEFT 45

A

(e) BACK 100

Figure 1.1
A sequence of turtle commands.

(f) LEFT 45
PENIJP

FORWARD 100

/
In describing the effects of these operations, we say that FORWARD and

BACK change the turtle's position (the point on the plane where the turtle
is located); RIGHT and LEFT change the turtle's heading (the direction in
which the turtle is facing).

The turtle can leave a trace of the places it has been: The position-
changing commands can cause lines to appear on the screen. This is
controlled by the commands PENUP and PENDOWN. When the pen is down,
the turtle draws lines. Figure 1.1 illustrates how you can draw on the
display screen by steering the turtle with FORWARD, BACK, RIGHT, and
LEFT.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Turtle Graphics 5

1.1.1 Procedures

Turtle geometry would be rather dull if it did not allow us to teach the
turtle new commands. But luckily all we have to do to teach the turtle a
new trick is to give it a list of commands it already knows. For example,
here's how to draw a square with sides loo units long:

TO SQUARE

FORWARD 100

RIGHT 90

FORWARD 100

RIGHT 90

FORWARD 100

RIGHT 90

FORWARD 100

This is an example of a procedure. (Such definitions are also com-
monly referred to as programs or functions.) The first line of the pro-
cedure (the title line) specifies the procedure's name. We've chosen to
name this procedure SQUARE, but we could have named it anything at
all. The rest of the procedure (the body) specifies a list of instructions
the turtle is to carry out in response to the SQUARE command.

There are a few useful tricks for writing procedures. One of them
is called iteration, meaning repetition doing something over and over.
Here's a more concise way of telling the turtle to draw a square, using
iteration:

TO SQUARE

REPEAT 4

FORWARD 100

RIGHT 90

This procedure will repeat the indented commands FORWARD 100 and
RIGHT 90 four times.

Another trick is to create a SQUARE procedure that takes an input for
the size of the square. To do this, specify a name for the input in the
title line of the procedure, and use the name in the procedure body:

TO SQUARE SIZE

REPEAT 4

FORWARD SIZE

RIGHT 90

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

6 Introduction

Now, when you use the command, you must specify the value to be used
for the input, so you say SQUARE 100, just like FORWARD 100.

The chunk FORWARD SIZE, RIGHT 90 might be useful in other con-
texts, which is a good reason to make it a procedure in its own right:

TO SQUAREPIECE SIZE

FORWARD SIZE

RIGHT 90

Now we can rewrite SQUARE using SQUAREPIECE as

TO SQUARE SIZE

REPEAT 4

SQUAREPIECE SIZE

Notice that the input to SQUARE, also called SIZE, is passed in turn as
an input to SQUAREPIECE. SQUAREPIECE can be used as a subprocedure
in other places as wellfor example, in drawing a rectangle:

TO RECTANGLE SIDE1 SIDE2

REPEAT 2

SQUAREPIECE SIDE1

SQUAREPIECE SIDE2

To use the RECTANGLE procedure you must specify its two inputs, for
example, RECTANGLE 100 50.

When programs become more complex this kind of input notation
can be a bit hard to read, especially when there are procedures such as
RECTANGLE that take more than one input. Sometimes it helps to use
parentheses and commas to separate inputs to procedures. For example,
the RECTANGLE procedure can be written as

TO RECTANGLE (SIDE1, SIDE2)

REPEAT 2

SQUAREPIECE (SIDE1)

SQUAREPIECE (SIDE2)

If you like, you can regard this notation as a computer language that
has been designed to make it easy to interact with turtles. Appendix
A gives some of the details of this language. It should not be difficult
to rewrite these procedures in any language that has access to the basic
turtle commands FORWARD, BACK, RIGHT, LEFT, PENUP, and PENDOWN.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Turtle Graphies 7

TO TRY.ANGLE TO TRIANGLE
REPEAT 3 REPEAT 3

FORWARD loo FORWARD 100
RIGHT 60 RIGHT 120

Figure 1.2
Attempt to draw a triangle.

Appendix B gives some tips on how to implement these commands in
some of the more common computer languages, and includes sample
translations of turtle procedures.

1.1.2 Drawing with the Turtle

Let's draw a figure that doesn't use 900 angles an equilateral triangle.
Since the triangle has 60° angles, a natural first guess at a triangle
procedure is

TO TRY.ANGLE SIZE

REPEAT 3

FORWARD SIZE

RIGHT 60

But TRY. ANGLE doesn't work, as shown in figure 1.2. In fact, running
this "triangle" procedure draws half of a regular hexagon. The bug in
the procedure is that, whereas we normally measure geometric figures
by their interior angles, turtle turning corresponds to the exterior angle
at the vertex. So if we want to draw a triangle we should have the
turtle turn 120°. You might practice "playing turtle" on a few geometric
figures until it becomes natural for you to think of measuring a vertex
by how much the turtle must turn in drawing the vertex, rather than by

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

>
TO HOUSE SIDE

SQUARE SIDE
TRIANGLE SIDE

TO HOUSE SIDE
SQUARE SIDE

FORWARD SIDE
RIGHT 30
TRIANGLE SIDE

Figure 1.3
(a) Initial attempt to draw a house fails. (b) Interface steps are needed.

the usual interior angle. Turtle angle has many advantages over interior
angle, as you will see.

Now that we have a triangle and a square, we can use them as building
blocks in more complex drawingsa house, for example. But figure 1.3
shows that simply running SQUARE followed by TRIANGLE doesn't quite
work. The reason is that after SQUARE, the turtle is at neither the correct
position nor the correct heading to begin drawing the roof. To fix this
bug, we must add steps to the procedure that will move and rotate
the turtle before the TRIANGLE procedure is run. In terms of designing
programs to draw things, these extra steps serve as an interface between
the part of the program that draws the walls of the house (the SQUARE

procedure) and the part that draws the roof (the TRIANGLE procedure).
In general, thinking of procedures as a number of main steps separated
by interfaces is a useful strategy for planning complex drawings.

Using procedures and subprocedures is also a good way to create
abstract designs. Figure 1.4 shows how to create elaborate patterns by
rotating a simple "doodle."

After all these straight line drawings, it is natural to ask whether the
turtle can also draw curvescircles, for example. One easy way to do

8 Introduction

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 1.4
Designs made by rotating a simple doodle.

Turtle Graphics 9

TO THING2 TO THING3

REPEAT FOREVER REPEAT FOREVER
THING THING

RIGHT 10 LEFT 45

FORWARD 50 FORWARD 100

TO THING

FORWARD loo
RIGHT 90
FORWARD loo
RIGHT 90
FORWARD SO
RIGHT 90

FORWARD 50

RIGHT 90

FORWARD loo
RIGHT 90

FORWARD 25

RIGHT 90

FORWARD 25 TO THING1

RIGHT 90 REPEAT 4

FORWARD 50 THING

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 1.5
FORWARD 1, RIGHT 1, repeated draws a circular arc.

this is to make the turtle go FORWARD a little bit and then turn RIGHT a
little bit, and repeat this over and over:

TO CIRCLE

REPEAT FOREVER

FORWARD i

RIGHT i

This draws a circular arc, as shown in figure 1.5. Since this program
goes on "forever" (until you press the stop button on your computer), it
is not very useful as a subprocedure in creating more complex figures.
More useful would be a version of the CIRCLE procedure that would
draw the figure once and then stop. When we study the mathematics of
turtle geometry, we'll see that the turtle circle closes precisely when the
turtle has turned through 3600. So if we generate the circle in chunks
of FORWARD i, RIGHT i, the circle will close after precisely 360 chunks:

TO CIRCLE

REPEAT 360

FORWARD i

RIGHT i

If we repeat the basic chunk fewer than 360 times, we get circular arcs.
For instance, 180 repetitions give a semicircle, and 60 repetitions give a
60° arc. The following procedures draw left and right arcs of DEG degrees
on a circle of size R:

TO ARCR R DEG

REPEAT DEG

FORWARD R

RIGHT i

10 Introduction

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Turtle Graphics 11

TO ARCL R DEG

REPEAT DEG

FORWARD R

LEFT i

(See figure 1.6 and exercise 3 for more on making drawings with arcs.)
The circle program above actually draws regular 36Ogons, of course,

rather than "real" circles, but for the purpose of making drawings on
the display screen this difference is irrelevant. (See exercises 1 and 2.)

1.1.3 Turtle Geometry versus Coordinate Geometry

We can think of turtle commands as a way to draw geometric figures on
a computer display. But we can also regard them as a way to describe
figures. Let's compare turtle descriptions with a more familiar system
for representing geometric figuresthe Cartesian coordinate system, in
which points are specified by two numbers, the x and y coordinates rela-
tive to a pair of axes drawn in the plane. To put Cartesian coordinates
into our computer framework, imagine a "Cartesian turtle" whose moves
are directed by a command called SETXY. SETXY takes two numbers as
inputs. These numbers are interpreted as x and y coordinates, and the
turtle moves to the corresponding point. We could draw a rectangle with
SETXY using

TO CARTESIAN.RECTANGLE (WIDTH, HEIGHT)

SETXY (WIDTH, O)

SETXY (WIDTH, HEIGHT)

SETXY (O, HEIGHT)

SETXY (O. O)

You are probably familiar with the uses of coordinates in geometry:
studying geometric figures via equations, plotting graphs of numerical
relationships, and so on. Indeed, Descartes' marriage of algebra and
geometry is one of the fundamental insights in the development of math-
ematics. Nevertheless, these kinds of coordinate systemsCartesian,
polar, or what have youare not the only ways to relate numbers to
geometry. The turtle FORWARD and RIGHT commands give an alterna-
tive way of measuring figures in the plane, a way that complements the
coordinate viewpoint. The geometry of coordinates is called coordinate
geometry we shall refer to the geometry of FORWARD and RIGHT as turtle
geometry. Aiid even though we will be making use of coordinates later

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

TO CIRCLES

REPEAT 9
ARCR 1 360

RIGHT 40

TO RAY R
REPEAT 2

ARCL R 90
ARCR R 90

TO SUN SIZE

REPEAT 9
RAY SIZE

RIGHT 160

Figure 1.6
Some shapes that can be made using arcs.

TO PETAL SIZE
ARCR SIZE 60
RIGHT 120
ARCR SIZE 60
RIGHT 120

TO FLOWER SIZE
REPEAT 6

PETAL SIZE
RIGHT 60

MONSTER

12 Introduction

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Turtle Graphics 13

on, let us begin by studying turtle geometry as a system in its own right.
Whereas studying coordinate geometry leads to graphs and algebraic
equations, turtle geometry will introduce sorne less familiar, but no less
important, mathematical ideas.

Intrinsic versus Extrinsic
One major difference between turtle geometry and coordinate geometry
rests on the notion of the intrinsic properties of geometric figures. An
intrinsic property is one which depends only on the figure in question,
not on the figure's relation to a frame of reference. The fact that a
rectangle has four equal angles is intrinsic to the rectangle. But the
fact that a particular rectangle has two vertical sides is extrinsic, for
an external reference frame is required to determine which direction is
"vertical." Turtles prefer intrinsic descriptions of figures. For example,
the turtle program to draw a rectangle can draw the rectangle in any
orientation (depending on the turtle's initial heading), but the program
CARTESIAN. RECTANGLE shown above would have to be modified if we
did not want the sides of the rectangle drawn parallel to the coordinate
axes, or one vertex at (O, O).

Another intrinsic property is illustrated by the turtle program for
drawing a circle: Go FORWARD a little bit, turn RIGHT a little bit, and
repeat this over and over. Contrast this with the Cartesian coordinate
representation for a circle, x2 + y2 = r2. The turtle representation
makes it evident that the curve is everywhere the same, since the process
that draws it does the same thing over and over. This property of the
circle, however, is not at all evident from the Cartesian representation.
Compare the modified program

TO CIRCLE

REPEAT FOREVER

FORWARD 2

RIGHT i

with the modified equation x2+2y2 = r2. (See figure 1.7.) The drawing
produced by the modified program is still everywhere the same, that is, a
circle. In fact, it doesn't matter what inputs we use to FORWARD or RIGHT
(as long as they are small). We still get a circle. The modified equation,
however, no longer describes a circle, but rather an ellipse whose sides
look different from its top and bottom. A turtle drawing an ellipse would
have to turn more per distance traveled to get around its "pointy" sides

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

14 Introduction

C)

REPEAT FOREVER
FORWARD 2

RIGHT i

x2 + 2j2 = r2

Figure 1.7
Modifying the turtle program still produces a circle. Modifying the equation gives
an ellipse.

than to get around its flatter top and bottom. This notion of "how
pointy something is," expressed as the ratio of angle turned to distance
traveled, is the intrinsic quantity that mathematicians call curvature.
(See exercises 2 and 4.)

Local versus Global
The turtle representation of a circle is not only more intrinsic than the
Cartesian coordinate description. It is also more local; that is, it deals
with geometry a little piece at a time. The turtle can forget about the
rest of the plane when drawing a circle and deal only with the small part
of the plane that surrounds its current position. By contrast, x2 + y2 =
r2 relies on a large-scale, global coordinate system to define its properties.
And defining a circle to be the set of points equidistant from some fixed
point is just as global as using x2 + y2 = r2. The turtle representation
does not need to make reference to that "faraway" special point, the
center. In later chapters we will see how the fact that the turtle does its
geometry by feeling a little locality of the world at a time allows turtle
geometry to extend easily out of the plane to curved surfaces.

Procedures versus Equations
A final important difference between turtle geometry and coordinate
geometry is that turtle geometry characteristically describes geometric
objects in terms of procedures rather than in terms of equations. In for-
mulating turtle-geometric descriptions we have access to an entire range
of procedural mechanisms (such as iteration) that are hard to capture in

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Turtle Graphics 15

the traditional algebraic formalism. Moreover, the procedural descrip-
tions used in turtle geometry are readily modified in many ways. This
makes turtle geometry a fruitful arena for mathematical exploration.
Let's enter that arena now.

1.1.4 Some Simple Turtle Programs

If we were setting out to explore coordinate geometry we might begin
by examining the graphs of some simple algebraic equations. Our inves-
tigation of turtle geometry begins instead by examining the geometric
figures associated with simple procedures. Here's one of the simplest:
Go FORWARD some fixed amount, turn RIGHT some fixed amount, and
repeat this sequence over and over. This procedure is called POLY.

TO POLY SIDE ANGLE

REPEAT FOREVER

FORWARD SIDE

RIGHT ANGLE

It draws shapes like those in figure 1.8.
POLY is a generalization of some procedures we've already seen. Setting

the angle inputs equal to 90, 120, and 60, we get, respectively, squares,
equilateral triangles, and regular hexagons. Setting the angle input equal
to i gives a circle. Spend some time exploring POLY, examining how the
figures vary as you change the inputs. Observe that rather than drawing
each figure only once, POLY makes the turtle retrace the same path over
and over. (Later on we'll worry about how to make a version of POLY

that draws a figure once and then stops.)
Another way to explore with POLY is to modify not only the inputs,

but also the program; for example (see figure 1.9),

TO NEWPOLY SIDE ANGLE

REPEAT FOREVER

FORWARD SIDE

RIGHT ANGLE

FORWARD SIDE

RIGHT (2 * ANGLE)

(The symbol "se" denotes multiplication.) You should have no difficulty
inventing many variations along these lines, particularly if you use such
procedures as SQUARE and TRIANGLE as subprocedures to replace or
supplement FORWARD and RIGHT.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

16

ANGLE = 72

ANGLE = i

IAv'vr
rl

ANGLE = 135

Figure 1.8

Shapes drawn by POLY.

ANGLE 144

ANGLE = 60

ANGLE = 108

Introduction

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Turtle Graphics 17

ANGLE = 30

ANGLE = 45

Figure 1.9
Shapes drawn by NEWPOLY.

Recursion
One particularly important way to make new procedures and vary old
ones is to employ a program control structure called recursion; that is,
to have a procedure use itself as a subprocedure, as in

TO POLY SIDE ANGLE

FORWARD SIDE

RIGHT ANGLE

POLY SIDE ANGLE

ANGLE = 144

ANGLE = 125

The final line keeps the process going over and over by including "do
POLY again" as part of the definition of POLY.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

18

ANGLE = 95

ANGLE = 120

Figure 1.10
Shapes drawn by POLYSPI.

One advantage of this slightly different way of representing POLY is

that it suggests some further modifications to the basic program. For
instance, when it comes time to do POLY again, call it with different
inputs:

TO POLYSPI SIDE ANGLE

FORWARD SIDE

RIGHT ANGLE

POLYSPI (SIDE + 1, ANGLE)

Figure 1.10 shows some sample POLYSPI figures. Look carefully at how
the program generates these figures: Each time the turtle goes FORWARD

it goes one unit farther than the previous time.

ANGLE = 90

ANGLE = 117

Introduction

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Turtle Graphics 19

Figure 1.11
The vertices of a POLYSPI.

A more general form ofPOLYSPI uses a third input (INC, for increment)
to allow us to vary how quickly the sides grow:

TO PQLYSPI (SIDE, ANGLE, INC)

FORWARD SIDE

RIGHT ANGLE

POLYSPI (SIDE + INC, ANGLE, INC)

In addition to trying POLYSPI with various inputs, make up some of your
own variations. For example, subtract a bit from the side each time,
which will produce an inward spiral. Or double the side each time, or
divide it by two. Figure 1.11 illustrates a pattern made drawing only the
vertices of POLYSPI, shown at four scales of magnification (see exercise
13).

10 X blowup, i arm right natural scale, 10 arms left

reduction, 31 arms right, 41 left reduction, 72 arms straight

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

ANGLE = O
INCREMENT = 7

ç_
,Aj

ANGLE = 2

INCREMENT = 20

Figure 1.12

Examples of INSPI.

ANGLE = 40

INCREMENT = 30

Another way to produce an inward spiral (curve of increasing curva-
ture) is to increment the angle each time:

TO INSPI (SIDE, ANGLE, INC)

FORWARD SIDE

RIGHT ANGLE

INSPI (SIDE, ANGLE + INC. INC)

Run INSPI and watch how it works. The turtle begins spiraling
inward as expected. But eventually the path begins to unwind as the
angle is incremented past 180°. Letting INSPI continue, we find that it
eventually produces a symmetrical closed figure which the turtle retraces
over and over as shown in figure 1.12. You should find this surprising.
Why should this succession of FORWARDs and RIGHTs bring the turtle back
precisely to its starting point, so that it will then retrace its own path?
We will see in the next section that this closing phenomenon reflects the
elegant mathematics underlying turtle geometry.

20 Introduction

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Turtle Graphics 21

Exercises for Section 1.1

We said in the text that when the inputs to the POLY procedure are
small, the resulting figure will be indistinguishable from a circle. Do
some experiments to see how large you can make the inputs and still
have the figure look like a circle. For example, is an angle of 200 small
enough to draw acceptable circles?

The sequence of figures POLY(2,2), POLY(1,1), POLY(.5, .5),

all with the same curvature (turning divided by distance traveled), ap-
proaches "in the limit" a true mathematical circle. What is the radius
of the circle? [HA]

[P] Write a procedure that draws circular arcs. Inputs should specify
the number of degrees in the arc as well as the size of the circle. Can
you use the result of exercise 2 so that the size input is the radius of the
circle? [A]

Although the radius of a circle is not "locally observable" to a turtle
who is drawing the circle, that length is intimately related to a local
quantity called the "radius of curvature," defined to be equal to i
curvature, or equivalently, to distance divided by angle. What is the
relation between radius and radius of curvature for a POLY with small
inputs as above? Do this when angle is measured in radians as well as
in degrees. [A]

[P] Construct some drawings using squares, rectangles, triangles,
circles, and circular arc programs.

[P] Invent your own variations on the model of POLYSPI and INSPI.

How many different 9-sided figures can POLY draw (not counting
differences in size or orientation)? What angle inputs to POLY produce
these figures? How about 10-sided figures? [A]

[PD] A rectangle is a square with two different side lengths. More
generally, what happens to a POLY that uses two different side lengths
as in the following program?

TO DOUBLEPOLY (SIDE1, SIDE2, ANGLE)

REPEAT FOREVER

POLYSTEP SIDE1 ANGLE

POLYSTEP SIDE2 ANGLE

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

22 Introduction

In particular, how does the symmetry of DOIJBLEPOLY relate to that of
POLY with the same ANGLE input? [HA]

[D] Which encloses the larger areaPOLY (5, 5) or POLY (6, 6)? [HA]

[P] Find inputs to INSPI that give a nonclosed figure. Can you give
a convincing argument that the figure is really nonclosed rather than,
say, a closed figure too big to fit on the display screen? [A]

[P] If the display system you are using allows "wraparound," you
can get some interesting effects by trying POLYs with very large sides.
Explore these figures. [H]

There are three kinds of "interchanges" we can perform on turtle
programs: interchanging RIGHT and LEFT, interchanging FORWARD and
BACK, and (for programs that terminate) reversing the sequence of in-
structions. Describe in geometric terms the effect of each of these opera-
tions, both by itself and in combination with the others. Start with the
class of programs that close (return the turtle to its initial position and
heading). [HA]

[P] The pattern made by the vertices of POLYSPI can be an interest-
ing object of study. The dots seem to group into various "arms," either
straight or curving left or right. To draw these patterns, you can use
the procedures

TO SPIDOT ANGLE

SUBSPIDOT O ANGLE

TO SUBSPIDOT SIDE ANGLE

FORWARD SIDE

DOT

RIGHT ANGLE

SUESPIDOT (SIDE + 1, ANGLE)

TO DOT

PENDOWN

FORWARD i

BACK i
PENUP

For example, predict what you will see between SPIDOT 90, which has
four arms, and SPIDOT 120, which has three. Can you explain the
sequence of figures you actually do see? Figure 1.11 shows how the figure

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

POLYs and Other Closed Paths 23

drawn by the same SPIDOT program seems to have different numbers
of spiral arms when viewed at different scales of magnification, which
can be accomplished by changing the increment to SIDE in SUBSPIDOT.
Study this phenomenon. [H]

[P] Suppose we have a function called RANDOM that outputs a random
digit (O through 9). Play around with the procedure

TO RANDPOLY SIDE ANGLE

REPEAT FOREVER

IF RANDOM = O THEN PENDOWN

ELSE PENUP

FORWARD SIDE

RIGHT ANGLE

Use this program as the basis for some psychology experiments. For
instance, what is the average number of sides that must be drawn before
people can recognize which POLY it is?

[D] Find some local and intrinsic way to describe an ellipse. Write
a program that makes the turtle draw ellipses, where the inputs specify
the size and eccentricity of the ellipse. [A]

1.2 POLYs and Other Closed Paths

This section develops some general theorems about turtle programs by
studying one of the simplest of them, POLYwhich, when it closes,
exhibits clearly some properties shared by all closed paths, no matter
how complicated. Even when POLY doesn't close, it can serve as a model
that clarifies symmetry and other important properties of a very general
class of programs. Careful and patient study of such a simple program
will be richly rewarded.

1.2.1 The Closed-Path Theorem and the Simple-Closed-Path Theorem

You have probably already noticed that POLY with an angle input of
360/n draws a regular n-sided polygon. But it is not always true that
(number of sides) X (angle) = 360. If you try running POLY with an angle
of 144 you will see that it draws a five-pointed star, and 5 X 144 = 720,
not 360. Noticing that 720 is exactly twice 360 might lead us to guess
the following formula:

(number of sides) X (angle) 360 X (an integer).

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

24 Introduction

It's not hard to see why this formula is true. The number of sides
times the angle is precisely the total turning done by the turtle in
walking once around the figurethe net change in heading. If the
path is to close legitimately, and not just cross itself, then the turtle
must end its trip with the same heading it started out with. Thus,
the total turning must be some multiple of 3600.

Total turning is the central concept here. It certainly need not be
restricted to POLY. One can imagine any turtle program keeping a
running count of its turning, adding in RIGHTs and subtracting LEFTs.

Because only RIGHTs and LEFTs change heading, this total turning is
always exactly the total change in heading. In particular, if the path is a
closed path (one which restores the turtle's initial position and heading),
we can be confident that the net turning (= change of heading) is a
multiple of 3600. This gives us our first turtle-geometric theorem:

Closed-Path Theorem The total turning along any closed path is an
integer multiple of 360°.

Total turning is an intrinsic property of a path. It does not depend on
where the path starts, or how it is oriented with respect to "vertical."
The total turning of a closed path is frequently summarized simply by
the particular integer that multiplies 360. That integer is called the
rotation number of the path. As an exercise, follow the turtle around
the sample paths in figure 1.13 and compute the rotation numbers.

Does your experience with POLY suggest an improvement to the closed-
path theorem? A little experimentation should convince you that there
are two essentially different classes of POLY paths: simple polygons (such
as squares, triangles, and hexagons); and star polygons (such as five-
pointed stars), which are characterized by the fact that the paths cross
themselves. The simple polygons always appear to have total turning
equal to +360° or 360°, depending upon the direction in which the
turtle traverses the path. The star polygons, however, always have total
turning different from +360°.

One wonders if this experimental correlation has general significance.
It is -not hard to prove its validity for POLYs (see exercise 11 below). But
the more important conjecture involves generalizing from POLYs to any
simple closed path (a closed path that does not cross itself):

Simple-Closed-Path Theorem The total turning in a simple closed path
is 360° (to the right or to the left). That is to say, the rotation number
of any simple closed path is + 1.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

rotation number i

rotation number 3

Figure 1.13
Rotation numbers of closed paths.

and thus

rotation number 1

Take a look at some examples of simple closed paths to convince
yourself of the plausibility of this theorem, which is difficult to prove
rigorously. We will return to it later, in chapter 4. For now you should
note that this theorem says that there is a relation between two very
different aspects of a closed paththe turning and the crossing points.
That makes it considerably less obvious than the closed-path theorem,
but also much more powerful. We give one example of the power here
and several more in the exercises.

The simple-closed-path theorem says that the sum of the exterior
angles of any simple polygon is 360°. For triangles, we can rewrite this
in terms of the three interior angles A, B, and C to get

(180 - A) + (180 - B) + (180 - C) = 360,

POLYs and Other Closed Paths 25

rotation number O rotation number 2

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

26 Introduction

(A + B + C) = the sum of interior angles = 3 X 180 - 360 = 180.

So, as a corollary of the simple-closed-path theorem, we have derived the
familiar result that the interior angles of a triangle must sum to 1800.
(Exercises 6-9 detail some other applications of the simple-closed-path
theorem.)

1.2.2 The POLY Closing Theorem

The POLY procedures we've written so far, iterative and recursive, have
one fault: They never stop. That makes it generally impossible to
use them as subprocedures in more complicated programs. Moreover,
the "inefficiency" of a drawing program that doesn't know when it is
done may simply offend one's sensibilities. The problem of making a
POLY program that stops is a mathematical one with two fundamentally
different approaches.

The global approach is as follows: Sit back and look ahead. Given an
ANGLE input, compute how many times the turtle must run the basic
POLY step, FORWARD SIDE, RIGHT ANGLE, before the path closes and
starts again. Then you need only repeat the POLY step that many times.
The local approach revolves around questions like the following: How can
the turtle know, as it is walking along, when it is done? What clue can
the turtle be watching for? We will take the second approach here, as it
turns out to be simpler. The first approach, however, is mathematically
rich and is pursued in section 1.4.

Consider: How could a turtle, while walking along drawing a POLY,

know when the figure has been completed? (A computer turtle cannot
see the lines it is drawing.) Thinking locally, the turtle knows only
two things, position and heading. Neither of these is truly local, for to
measure them usually involves a coordinate system. But the one locally
computable quantity we know abouttotal turningcan do the trick.
The closed-path theorem says that if the path closes, then total turning
must be a multiple of 360°. How about the converse: If the total turning
reaches a multiple of 360°, will the path be closed? This is not true for
turtle paths in general, but it is true for POLY:

POLY Closing Theorem A path drawn by the POLY procedure will close
precisely when the total turning reaches a multiple of 360°.

There is one bug in this theorem, one exceptional case: If the angle of
the POLY is equal to O then the turtle just walks off along a straight
line. The path never closes, even though at every point the total

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

POLYs and Other Closed Paths 27

Figure 1.14
POLY lays down a sequence of equal chords.

turning is 0, a perfectly good multiple of 360. But this exceptional case,
FORWARD SIDE, RIGHT 0, is transparent enough so that we can just leave
it out of consideration in most instances. Any multiple of 3600 will, of
course, have the same effect as a turn of 0.

We'll outline two different proofs of the POLY closing theorem.

Sketch of' Proof i Have you noticed the important fact that the vertices
of POLY lie on a circle? (Everything about POLY seems to be circular!)
We leave the proof of this geometric fact to you in exercise 2. Using
this fact, one can redescribe POLY as the sequential laying down of fixed-
length chords on a fixed circle as shown in figure 1.14. The point is that
there is only one chord of the required length that can be produced by
the turtle starting at any given heading. (Actually there are two, but
one of them has the wrong sensethe turtle would turn off the circle
after traversing the chord.) Thus, whenever the turtle returns to its
initial heading (total turning = any multiple of 360°) it will be about to
retrace the first chord and so should stop. Notice how this proof breaks
down for the exceptional case FORWARD SIDE, RIGHT 0. The turtle must
do some turning or else the vertices will lie on a straight line rather than
on a circle.

An alternative proof is inspired less by geometry and more by ideas
from the theory of computation. It proceeds as follows.

Sketch of Proof 2 Assume that we have a turtle following a POLY pro-
cedure, and that at some time the turtle returns to its initial heading
(heading change = a multiple of 360°) but not to its initial position. We
will show that this assumption leads to a contradiction. (The trick of
the proof is to show that the turtle must walk off to infinity in some

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

28 Introduction

PO

(e)

Figure 1.15
The POLY closing theorem. (a) Suppose the turtle returns to his initial heading, but
not his initial position. (b) n more steps must do the same thing again. (c) From a
new heading (after one POLY step), chunks of n steps carry the turtle away on a new
line.

direction. Then, by regrouping the sequence of commands, we'll show
that the turtle runs off to infinity in a different direction.)

By assumption, the turtle returns to its initial heading after some
number (say, n) repetitions of the POLY step. (Notice that n cannot
be i if we neglect the exceptional case ANGLE = o.) Draw a dotted
line connecting the turtle's initial position Po to its position p after n
repetitions. This line makes some angle O with the turtle's initial heading
(figure l.15a).

Now let the turtle continue for n more repetitions of the POLY step.
Since the turtle starts out from p with the same heading it had when
it started at po, the effect of n more POLY steps will be to do the same

Pa

(a) (b)

-

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

POLYs and Other Closed Paths 29

thing again, moving the turtle farther out along the same line, and again
bring it back to the initial heading (figure 1.15b). Continuing with n
more repetitions, and n more, and so on, we see that the turtle must
run off infinitely far in the direction of the dotted line. Moreover, at no
point can the turtle's path stray very far from the line, since the turtle
must get back to it at the end of every n POLY steps.

Now let's return the turtle to the initial state and run the POLY step
for one iteration. We will now see the turtle at a new position pi with a
different heading. If we continue with n repetitions from here, the turtle
will end up on a new dotted line that lies at angle O to this new heading.
(figure 1.15c).

But the problem is obvious now. Running another sequence of n,
then another and another, forces the turtle off infinitely far along this
new line. But the turtle cannot remain close to both dotted lines as it
marches off to infinity. This contradiction means that our assumption
that the turtle does not come back to the initial position must have been
wrong. This completes the proof.

This second proof demonstrates an important computational strategy:
Divide a process into meaningful chunks (for example, the parts of
the POLY between equal headings), then pay close attention to the net
action of the chunks. Structuring a complex program as a group of
subprocedures illustrates the same strategy.

Here finally is our POLY with stop rule:

TO POLYSTOP SIDE ANGLE

TURN i- O

REPEAT

FORWARD SIDE

RIGHT ANGLE

TURN - (TURN + ANGLE)

UNTIL REMAINDER (TURN, 360) = O

Note the use of the new symbol +, which means "assign to the variable
on the left the value given on the right." The procedure REMAINDER is

a function that computes the value of its first input modulo its second
input. The program also makes use of the iteration construct "REPEAT

UNTIL (some condition)", which keeps repeating the indented portion
until the condition is true (and always does the indented part at least
once).

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

POLYROLL 100 90 30

Figure 1.16
Examples of POLYROLL.

This program allows us to use POLYs as building blocks in more com-
plex figures; for example (see figure 1.16),

TO POLYROLL SIDE ANGLE1 ANGLE2

REPEAT FOREVER

POLYSTOP SIDE ANGLE1

RIGHT ANGLE2

Exercises for Section 1.2

1. The simple-closed-path theorem has a serious bug as it stands. It pur-
ports to give the precise multiple of 360 that describes the total turning
for a set of paths. Unfortunately, one can insert a step, RIGHT 360,

that does not change the path at all, yet changes the multiple of 360
given by total turning. These gratuitous 360s must be pruned from
the program before the theorem can hold. However, the pruning can
be somewhat complicated if the gratuitous 360s are hiddenas, for ex-
ample, LEFT 160 followed by RIGHT 360 being written as RIGHT 200.

Give general rules for pruning. (Think of writing a procedure that takes
the text of a turtle procedure as input and returns the pruned version.)
Try your method on the following program:

TO PRUNE.ME

FORWARD S

RIGHT 360

FORWARD S

LEFT 240

POLYROLL 100 60 45

30 Introduction

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

POLYs and Other Closed Paths 31

Figure 1.17
Relate the angles A and B to the total turning over the arc.

FORWARD 10

LEFT 120

FORWARD O

LEFT 120

FORWARD 10

RIGHT 120

Can you give some motivation for pruning other than that it makes the
simple-closed-path theorem true? [A]

Fill in the details in the first proof of the POLY closing theorem (see
"sketch of proof 1"), including a proof that the vertices of POLY lie on a
circle. [H]

Prove that if the angle input to POLY is an irrational number, the
turtle never returns to its initial position, and yet always remains within
a finite distance from it. [A]

[P] Invent some variations on the POLYROLL program, perhaps modeled
after POLYSPI and INSPI.

Rewrite the POLYSTOP program recursively, so that it doesn't use the
REPEAT command. [A]

What is the sum of the interior angles of an n-gon? What is the
interior angle of a regular n-gon? Show how these formulas can be easily
derived by using the simple-closed-path theorem. [HA]

Suppose we have a simple arc (an arc that does not cross itself) and
that we join the endpoints of the arc by a straight line. Suppose further
that the line and the arc do not intersect except at the endpoints (figure
1.17). Use the simple-closed-path theorem to give a formula relating the

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 1.18
Solve for A in terms of G.

total turning over the arc to the (interior) angles that the arc makes with
the line. [HA]

Apply the result of the previous exercise to find the angle between a
chord of a circle and the arc that it subtends (figure 1.18a). [Al

Use the previous exercise to compute the arc of a circle subtended by
an inscribed angle (figure l.18b). [HAI

Proof i of the POLY closing theorem was based on the fact that the
vertices of a POLY all lie on a circle. Use the simple-closed-path theorem
to show that the amount of arc on the circumscribed POLY circle from
one vertex to the next is just the angle input to the POLY procedure. IHI

We said that we would delay giving a proof of the simple-closed-path
theorem until chapter 4. Give a proof of the theorem in the special case
where the simple closed path is a POLY figure. [Hl

If you take a bicycle and lock the front wheel at angle O from straight
ahead (where O is rather small), the bicycle will turn in a circle. What
is the radius of the circle, given that the length between wheel centers
of the bicycle is D? [HA]

1.3 Looping Programs

We said that the turtle approach allows us to take concepts that are
useful in thinking about computation and apply them to the study of

32 Introduction

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Looping Programs 33

geometry. One such concept is that of state. Of course the idea of state
is not unique to computer science. It is important in physics, chemistry,
and any other field involving configurations that are subject to change.
But we do not generally look upon geometry in this way; geometric
figures are usually regarded as static objects. Turtle geometry provides
a more dynamic perspectivethe geometry is tied to movements.

The state of the turtle is given by specifying its position and its
heading. From the state point of view, the basic turtle commands-
FORWARD, BACK, LEFT, and RIGHTare state-change operators: They
cause the turtle to change state. In this section we will look at a sequence
of turtle commands purely in terms of its net effect in changing the initial
state to the final state, ignoring what comes between. Thus, a sequence
of turtle commands can be summarized as a single state-change operator.
At this level of abstraction all programs that generate a closed path are
the samethey are all state-change-equivalent. They correspond to the
simplest of all state-change operators, the one that does nothing and
leaves the initial state invariant.

1.3.1 The Looping Lemma

There is something striking about the paths drawn by the modifications
to POLY discussed at the end of section 1.1. It is as if their descent
from POLY cannot be suppressed! You should have noticed the same
phenomenon in many of your own programs. Figure 1.19 shows a POLY
skeleton in dotted lines underlying the elaborate surface structures of
NEWPOLY and INSPI. Can we understand this phenomenon?

The key observation is this: Between successive vertices of the POLY
skeleton, the program does the same thing. We might say that the
program is just a decorated version of the underlying POLY. That the
paths of NEWPOLY and INSPI consist of a collection of identical pieces
is evident from the pictures they draw. In the case of NEWPOLY the
repetitive or looping behavior is clear in the program structure. INSPI 's
program structure will require a second look. For now we proceed on
the basis of the visual evidence of the paths and consider the class
of programs that do the same thing over and over, regardless of the
complexity of the basic loop (the thing that is repeated).

We can peel away the decoration by focusing on the net result of the
basic ioop. What is the difference between the initial state and the final
state of the turtle? By the nature of the turtle oniy two things can

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

34 Introduction

90 72

135 180

60 144

Figure 1.19
NEWPOLYs and INSPIs with "POLY skeletons" indicated by dashed lines. (Numbers are
skeleton angles.)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Looping Programs 35

Figure 1.20
(a) The net result (state change) of some basic ioop. (b) Repeating the net result
lays down the POLY skeleton.

happen: a net change of position and a net change of heading. Figure
1.20a shows the general case. Notice that we cannot assume that the
change of position is in the same direction as the turtle's original heading;
hence, we must include an angle i between the initial heading and the
change-of-position line.

When the basic ioop is repeated, the same change of state must occur,
but now relative to the new heading and hence rotated by the heading
change which the turtle underwent in the first loop. We will call this
change of heading T (for total turn). The next loop must follow the same
pattern, and so on. Figure 1.20b shows the repeated process laying down
the skeleton POLY. The angle i is irrelevant to the intrinsic properties of
the underlying POLY---it just determines the relative orientation of the
POLY with respect to the initial heading of the turtle. The important
quantity is the heading change from beginning to end of the basic loop,
the total turning T in the basic loop. This is the angle of turning from
one segment of the POLY to the next, and it determines the figure's
properties. We can state this result more formally:

Looping Lemma Any program that is just a repetition of some basic
loop of turtle instructions has precisely the structure of POLY with an
angle input equal to T, the total turning in the loop.

You should be able to say what "has the structure of POLY" means in
detail. It includes such things as repeatedly touching base with a circle

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

36 Introduction

if total turning is not equal to a multiple of 3600, and touching base
with a line if it is. It also includes the fact that the symmetry type of
the figure is the same as that of the underlying POLY. For instance, if
the total turning of the basic loop is 90°, the repeated loop will have the
fourfold symmetry of a square, necessarily closing in four iterations of
the ioop.

1.3.2 Examples of Looping Programs

Let's analyze some simple looping programs. In NEWPOLY the total
turning is 3 X ANGLE. If ANGLE is 144, then T = 3 X 144 = 432, which is
equivalent to 72 = 360/5. Hence, the five-pointed star NEWPOLY actually
has the structure of a pentagon (not a POLY with ANGLE 144)something
that might not have been apparent froni just looking at the path. (The
fact that the path is simple is a clue. Also, observe that the program
visits the vertices of the underlying pentagon in sequence, as does POLY
with an ANGLE of 72, rather than skipping between vertices, as does POLY
with ANGLE 144.)

Let's take a look at INSPIin particular INSPI with ANGLE equal to
2 and INCREMENT equal to 20, which draws the decorated five-pointed
star shown in figure 1.12. The program simply alternates FORWARD SIDE
with turning RIGHT an ever-increasing angle which is tabulated in the
following:

RIGHT 2
RIGHT 2 + 20
RIGHT 2 + 2*20
RIGHT 2 + 3*20

RIGHT 2 + 17*20
RIGHT 2 + 18*20 = 2 + 360

The last command has the same effect as the first, and the one to follow,
RIGHT 2 + 19)< 20 = RIGHT 2 + 20 + 360, is the same as the
second. The program is clearly staging a repeat performance of the first
18 steps. Computing the total turning, we find

2+(2+20)+(2+2 X 20)+...+(2+17 X 20)
= 18 X 2+(1 +2++11) X 20 = 3,096,

which is equal to 216, or 144, modulo 360. (When computing the

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Looping Programs 37

ANGLE = 90 ANGLE = 144 ANGLE = 60
MAX 10 MAX = 8 MAX = 10

Figure 1.21
Spirolaterals.

heading change, we need only consider the turning modulo 3600.) We
now see the origin of the five-pointed star POLY skeleton. INSPI is typical
of the way in which, because of the modulo-360 effect, many seemingly
ever-changing programs actually form repeating loops.

Another interesting repeating-loop program draws the family of figures
called spirolaterals shown in figure 1.21:

TO SPIRO (SIDE, ANGLE, MAX)

REPEAT FOREVER

SUBSPIRO (SIDE, ANGLE, MAX)

TO SUBSPIRO (SIDE, ANGLE, MAX)

COUNT + i

REPEAT

FORWARD (SIDE * COUNT)

RIGHT ANGLE

COUNT ' (COUNT + 1)

UNTIL COUNT > MAX

If you study this procedure you will see that it amounts to having the
turtle draw an initial chunk of a POLYSPI (in fact, the first MAX lines of
a POLYSPI) and repeat this over and over. It is easy to see that the basic
loop in SPIRO has total turning ANGLE X MAX.

We will refer to the figures drawn by SPIRO as simple spirolaterals. A
more general kind of spirolateral (shown in figure 1.22) maintains a basic
loop in which each vertex has the same amount of turning, but allows the
turtle to turn left rather than right at some of the vertices. To specify

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

38 Introduction

ANGLE = 45 ANGLE = 120 ANGLE = 90
MAX = 11 MAX = 6 MAX 11
LIST = [8 9] LIST = [1 3] LIST = [3 4 5]

Figure 1.22
Generalized spirolaterals.

these figures we need to indicate the direction of the turtle's turning
at each vertex. The corresponding GSPIRO procedure takes four inputs:
a side length (the length of the shortest side in the figure), an angle
through which the turtle turns left or right at each vertex, a number
MAX telling how many steps are in the basic loop, and a list of numbers
specifying the vertices at which the turtle should turn left. If the vertex
number is a member of the list, then the turtle turns left at the vertex;
otherwise the turtle turns right. (The MEMBER command is used to tell
whether or not something is a member of a list.) Thus, the GSPIRO

procedure is

TO GSPIRO (SIDE, ANGLE, MAX, LIST)

REPEAT FOREVER

SUBGSPIRO (SIDE, ANGLE, MAX, LIST)

TO SUBGSPIRO (SIDE, ANGLE, MAX, LIST)

COUNT - i

REPEAT

FORWARD SIDE * COUNT

IF MEMBER (COUNT, LIST)

THEN LEFT ANGLE

ELSE RIGHT ANGLE

COUNT - COUNT + i

UNTIL COUNT > MAX

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Looping Programs 39

ANGLE = 90
MAX = 8
LIST = [4 8]

Figure 123
Unexpectedly closed spirolaterals.

ANGLE 120
MAX = 11
LIST = [3 4 6 7]

The basic loop SUBGSPIRO makes MAX - L right turns and L left turns
where L is the number of elements in LIST, making a total turning of

(MAX - L) X ANGLE - L X ANGLE = (MAX - 2L) X ANGLE.

One intriguing property of spirolaterals is that they may be closed even
when the heading change is a multiple of 3600. Total turning a multiple
of 3600 would lead you to expect a POLY substrate that would march
off on a straight line to infinity. But, by a remarkable coincidence, the
sidelength of the underlying POLY (which we did not bother to compute
for any of these other programs) might turn out to be 0 as well! This
corresponds to having a looping program in which the basic loop closes
all by itself. This phenomenon deserves a name: unexpectedly closed.
Figure 1.23 gives some examples of unexpectedly closed spirolaterals.

1.3.3 More on the Looping Lemma

We end the body of this section with two remarks about the looping
lemmaone about its implications beyond predicting the symmetry of
looping programs, the other about increasing the strength of the lemma.

First, the looping lemma constrains the behavior of any looping pro-
gram. Under many circumstances, it may be possible to exclude simple
looping as a way of generating a class of paths. For example, any infinite
spiral neither touches base on a fixed circle nor marches off to infinity
around a line as POLY does, so it cannot be drawn by any looping pro-
gram.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

40 Introduction

Second, it can be very valuable to know how to identify which pro-
grams are looping programs without a detailed look at each particular
case. We can give a purely program-structural criterion that serves to
identify such programs: A program must loop (or terminate) if it consists
of any combination of

fixed and finite sequences of turtle commands FORWARD, BACK, LEFT,

and RIGHT with specified numeric inputs (these are called fixed instruc-
tion sequences),

repeats, and

calls to programs that satisfy these properties.

Notice that this criterion is recursive in form.

1.3.4 Technical Summary

The following is a technical recap of results stated or implied in this
section. The detailed proofs of these facts are left as exercises.

The Canonical Form of a Turtle State-Change Operator
Any fixed instruction sequence of turtle commands is state-change-equi-
valent to a POLY step sandwiched between a RIGHT I and LEFT I for
some angle I:

RIGHT I

FORWARD D

RIGHT T

LEFT I

The angle T is precisely the total turning of the fixed instruction se-
quence.

Looping Lemma and Classification of Looping Programs
Any program that repeats a fixed instruction sequence (or the equivalent,
as in INSPI) has the behavior of a POLY with angle T and side D in the
following senses (the angle T may be simply determined as the total
turning in the basic loop):

Boundedness If T O then the figure drawn by the program will lie
within a fixed distance from some circle, and hence will be bounded. In
the exceptional case, T = 0, the figure will lie within a fixed distance
from some line (figure 1.24).

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Looping Programs 41

TO T=O

Figure 1.24
Any looping program is confined to a region (a) near a circle (T O) or (b) in the
exceptional case (T O) near a line.

Closing If T is a rational multiple of 3600, the program will always
draw a closed path, with the usual exception, T = 0, which causes the
program to walk off to infinity. The exception to the exception is when
D is also zero, the equivalent of POLY 0 0, in which case the program is
"unexpectedly" closed. If T is irrational the program will never close.

Symmetry The program must have the same rotational symmetry as
POLY D T. In particular, if T = 360s/r where s/r is a fraction in lowest
terms, then the program will have r-fold symmetry. (We have not yet
discussed symmetry in detail. This topic will form the basis of section
1.4.)

1.3.5 Nontechnical Summary
Doing the same thing over and over is either circular, straight-linish, or
very dull.

Exercises for Section 1.3

[P] Draw at least three distinct (ignoring size) INSPI figures with
sixfold symmetry.

Give a proof of the looping lemma and the classification of looping
programs given in the technical summary. This may be done using the
form of a general state-change operator (given above) or by modifying

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

42 Introduction

Proof 2 of the POLY closing theorem of subsection 1.2.2. Give bounds
for the "fixed distances" specified in the boundedness part in terms of
the instructions in the basic ioop.

[P] Figure 1.23 shows some unexpectedly closed spirolaterals. Find
some more.

What is the heading change for INSPI with an ANGLE of A and an
INCREMENT of 10? [A]

[D] What is the heading change for INSPI with an ANGLE of A and
an INCREMENT of 360/n, where n is an integer? [HA]

[DF] Compute the total turning, T, of the basic loop in the following
looping program in terms of the angle inputs BOTTOM and TOP. Use
your formula to draw at least three different (ignoring size) figures with
threefold symmetry; fourfold, fivefold. [HA]

TO POLYARC (SIDE, BOTTOM, TOP)

REPEAT FOREVER

INSPI.STOP (SIDE, BOTTOM, TOP, 1)

INSPI.STOP (SIDE, TOP, BOTTOM, -1)

TO INSPI.STOP (SIDE, START.ANG, END.ANG, INC)

REPEAT

FORWARD SIDE

LEFT START.ANG

START.ANG - START.ANG + INC

UNTIL START.ANG = END.ANG

[P] Make "even more general" spirolaterals by allowing the turtle to
move BACK at certain of the vertices. Analyze this program. Find some
unexpectedly closed figures.

[DD} Show that a simple spirolateral can never be unexpectedly
closed. [Hl

[DD] Can INSPI produce unexpectedly closed figures?

[P] Invent some disguised looping programs like INSPI. Give a
formula for the total turning of the basic loop in terms of the inputs
to the procedure. Find inputs that draw figures with simple symmetry.
Find inputs that draw unbounded figures. Determine whether any of
these figures are unexpectedly closed.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Symmetry of Looping Programs 43

When we summarize turtle paths as state-change operators, the
closed paths are precisely those operators that leave the turtle's state
unchanged. This suggests the generalization of studying operators that,
when run twice (or three times, and so on), leave the state unchanged.
Describe the paths corresponding to these operators. [A]

[P] Can you characterize "looping programs" in terms of the com-
mands used in writing them? In particular, consider the following pro-
gram structures, where X and Y are variables and n is some fixed number:

do loops

goto statements

assignment statements of the form x i- n

assignments of the form X - Y + n

conditional statements of the form IF X = n

For each kind of structure, say whether a program that repeats a block
of instructions consisting of basic turtle commands together with that
particular structure must necessarily be equivalent to a program which
repeats a fixed instruction sequence. Are there bad combinations, in the
sense that two structures which separately lead to looping may not loop
when combined in a single program?

1.4 Symmetry of Looping Programs

Section 1.3 showed how the symmetry of any looping program is deter-
mined by the symmetry of an underlying POLY skeleton. But what deter-
mines the symmetry of the POLY? To begin with, it is clear that the SIDE

input in POLY SIDE ANGLE does not affect the shape of the figure at all
but only determines the size. The real question is: How does the ANGLE

input affect the symmetry of POLY? To be more precise, we can break
this question into two questions:

For a given ANGLE input, how many vertices will the resulting POLY have?

Conversely, if we want to produce a POLY with a specified number of
vertices, what number(s) can we use for the ANGLE input?

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

44 Introduction

The purpose of this section is to answer these questions, and in doing so
to provide a taste of the mathematics of number theory.

1.4.1 The Symmetry of POLY

We want to relate the number of vertices, n, to the input ANGLE, which
we'll call A for short. The POLY closing theorem of 1.2.2 gives us a very
good start. It says POLY is done when the turtle has turned a multiple
of 3600, that is, when n turns of A each is some multiple of 360:

nA=360R.

We've given the multiple the name R for a good reason: It is the rotation
number of the figure, as defined in subsection 1.2.1.

But the above equation, which defines a common multiple of A and
360, doesn't tell the whole story. R and n aren't just any integers
satisfying the equation; they are the smallest (positive) that do so,
corresponding to the first time headirg change reaches a multiple of 360.
That is why the number nA = 360R is called the least common multiple
of A and 360, denoted LCM(A, 360). The answer to our first question is:

For an ANGLE input of A, the number of vertices of the resulting POLY is
n = LCM(A, 360)/A and the rotation number is R LCM(A, 360)/360.

What we've done so far is little more than giving the answer a name.
How does one go about computing the least common multiple? One way,
which assumes that A is an integer, is to express A and 360 as products
of primes. Then each of the expressions nA and 360R will give a partial
view of the factorization of LCM(A, 360). For example, if A = 144 then
we have A = 2 X 32, 360 = 2 X 32 X 5. Using this decomposition, we
can deduce that

LCM(144, 360) = n X 2 X 32 = R X 2 X 32 x 5
2 X 32 X 5 = 720,

for it is easy to see that the LCM must contain at least four factors
of 2 (from A), one factor of 5 (from 360), and two factors of 3 (from
either A or 360), and from this we derive that n = 5 and R 2.

So POLY loo 144 has fivefold symmetry (it consists of n = 5 identical
pieces identically hooked together) and rotation number 2.

Another way to compute the least common multiple is to solve the
equation nA = 360R exactly as the procedure POLY solves it: by running
until it closes! Make a list of n X A for n = 1, 2, 3,... and see

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Symmetry of Looping Programs 45

when n X A is a multiple of 360. Applying this method to our example
A= 144 gives

n nA multiple of 360?

1 144 no
2 288 no
3 432 no
4 576 no
5 720 yes

We can formulate this method as a procedure for computing the least
common multiple:

TO LCM A B

Ni-O
REPEAT

N-N+ j
MULTIPLE - N * A

UNTIL REMAINDER (MULTIPLE, B) = O
RETURN MULTIPLE

Such "brute force" methods of computation can be very useful. We will
see in the next subsection the utility of a simple modification of this
process, called Euclid's algorithm. The LCM procedure uses RETURNa
command we haven't seen before. Since the procedure is supposed to
be computing some value, we need to have some method for "getting
the value out of the procedure." This is what RETURN does. In practice
the returned value will be used as an input to another operation, for
example, PRINT LCM(144,360).

Let's turn to our second question about the symmetry of POLY figures.
Suppose we want to produce figures of a given symmetry; what ANGLE
can we use? To answer this question, let's start again with the basic
symmetry equation nA = 360R. Since we want to find values for A that
will produce a given value for n, we should be able to use any A that
satisfies A = 360R/n. The question is: What value(s) can we choose
for R? For instance, we can take R = 1, A = 360/n, which always
worksit makes a regular n-sided polygon. But R = 2, A = 2 X 360/n
may not work. Here's an example: Suppose we want tenfold symmetry,
n = 10. If we take R = 2, then A will be 72. This makes a pentagon,
not a figure with tenfold symmetry.

We've been fooled. A = 360R/n doesn't always give n-fold symmetry.
Let's look more carefully at the above guess, R = 2, n = 10.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

46 Introduction

Not only does the resulting pentagon not have tenfold symmetry, but it
has rotation number 1, not 2. We clearly are not justified in naming our
guesses 10 by n and 2 by R, so let's give them new names, n' and R'.
How do these relate to the real n and R?

Let's compute the real n and R that correspond to A = 360R'/n'. We
want the smallest positive integers n and R that satisfy nA = 360R. But
this equation is satisfied by all pairs of integers R and n with the property
that R/n = R'/n'. Since we want R and n to be the smallest pair with
this property, we should take them to be the numerator and denominator
of the fraction R'/n' reduced to lowest terms. In our example we had
R'/n' = 2/lo = 1/5, so n = 5 and R = 1. To put this another way,
A = 360R'/n' will give n'-fold symmetry only when R'/n' cannot be
reduced, that is to say, when R' and n' have no factors in common.
Thus, the answer to the second question above is the following:

To generate a PULY with n-fold symmetry, take the ANGLE input to be
A 360R/n, where R is any positive integer that has no factors in
common with n.

1.4.2 Common Divisors

We've answered our questions about the symmetry of POLY in terms of
such concepts as common multiples and common factors. Let's take a
detour from turtle geometry and turn this process around to see what
knowing about POLY can tell us about these number-theoretic concepts.

To begin with, the previous subsection led us to consider pairs of
integers n and R that have no common factors. Such pairs are called
relatively prime. We saw that A = 360R/n draws an n-sided POLY
precisely when R is relatively prime to n. We'll reinterpret this fact in
terms of a new way of looking at the POLY process.

Think of the n vertices of POLY lying on a circle and numbered from O
through n - 1. To construct the various n-sided POLYs we can connect
the vertices in sequence using the following sorts of rules: (1) Connect
each vertex to the very next one; (2) connect the vertices, skipping one
in between; (3) connect the vertices, skipping 2 in between; and so on.
Figire 1.25 illustrates the various patterns for n 8. There are n - 1
possibilities, which correspond to R = 1, 2,.. . , n - i in the formula
A = 360R/n. For any choice of R, if we start at the vertex numbered
O, then that is connected to the vertex numbered R, which is connected
to the vertex numbered 2R, and so on. Since we're counting these ver-

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

0, 4, 8, 12, ... (mod 8)

0,6, 12,18,... (mod 8)

Figure 1.25
Patterns of connecting eight points, n = 8.

0,5, 10, 15,. . . (mod 8)

0,7, 14,21,. .. (mod 8)

Symmetry of Looping Programs 47

0,1,2,3,... (mod 8) 0,2,4,6,... (mod 8) 0,3,6,9,... (mod 8)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

48 Introduction

tices modulo n, we see that the sequence of vertices hit are precisely the
multiples 0, R, 2R,.. . , (n - 1)R taken modulo n.

Now we saw in the previous subsection that, if R and n are relatively
prime, then the resulting POLY figure will have n vertices. In terms of the
circle picture this means that all vertices on the circle 0, 1, 2,.. . , n - i
are reached. Consequently, if R and n are relatively prime, then the
multiples of R taken modulo n must include all the numbers between O
and n - 1. In other words, if s is any integer between O and n - 1, then
there is some multiple of R, say pR, with pR = s (mod n). Moreover, if
R and n are not relatively prime, then at least one of the n vertices will
not be touched by the POLY process, and so there will be some number
s which is not equal to pR (mod n) for any p. Restating the equality
modulo n in terms of precise equality, we have the following:

Two integers R and n are relatively prime if and only if, for any integer
s, we can find integers p and q such that pR - qn = s.

This condition can be written in an equivalent form (exercise 10) that
reflects the fact that, if the vertex labeled i is hit, then all vertices must
be:

Two integers R and n are relatively prime if and only if there exist
integers p and q such that pR + qs 1.

In summary We have shown how to translate a condition about the
relative primality of two integers into a rather different condition which
has to do with representing integers as sums.

What exactly happens when R and n are not relatively prime? Figure
1.25 includes some examples: Taking n = 8 and R = 2 hits all the
even vertices (the multiples of 2); n = 8 and R 4 hits only O and
4 (multiples of 4); n = 8 and R = 6 hits all the multiples of 2. In
general, the vertices which are hitnumbered 0, R, 2R,. . . , (n - 1)R,
taken modulo ngive precisely the multiples of some integer d. This
integer d is called the greatest common divisor of n and R, and it can be
defined by stating that d = GCD(n, R) is the largest integer that divides
both n and R. The fact that the vertices which are hit are precisely the
multiples of 1 follows from the fact that GCD(n, R) can alternatively
be defined as the smallest positive integer that can be represented as
pR + qn, where p and q also integers. We leave it to you (exercise 11)
to verify these claims. You can see that the GCD of n and R is an

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Symmetry of Looping Programs 49

important quantity. When it is 1, n and R are relatively prime and
the POLY has n-fold symmetry. When the GCD is not 1, it gives d, the
integer whose multiples are the vertices actually hit.

Neither definition of GCDas the largest common divisor, or as the
smallest positive pR + qnseems very helpful in actually computing
the GCD of two given integers. One method for doing so is Euclid's
algorithm. The idea of the algorithm is very simple: The common factors
of n and R are the same as the common factors of n - R and R. (Prove
this.) And so the problem of finding the GCD of n and R can be reduced
to finding the GCD of n - R and R:

Euclid's Algorithm Start with two numbers. (1) If the two numbers are
equal, then stop; the GCD is their common value. (2) Subtract the
smaller number from the larger and throw away the larger. (3) Repeat
the entire process using, as the two numbers, the smaller number and
the difference computed in step 2.

The process produces ever smaller numbers and stops with two equal
numbers. Take as an example 360 and 144. The sequence of pairs
generated is

(360, 144) -+ (216, 144) - (72, 144) -+ (72, 72) - done: GCD = 72

Finding the GCD of 360 and 144 can be interpreted as follows: Any POLY
with an integer angle will touch some subset of the vertices of a regular
360-gon. If the angle is 144, the vertices touched will be the multiples
of 72.

We can translate Euclid's algorithm into a recursive computer proce-
dure:

TO EUCLID (N, R)

IF N = R THEN RETURN N

IF N > R THEN RETURN EUCLID (N - R, R)

IF N < R THEN RETURN EUCLID (N, R - N)

There's an obvious way to speed up the algorithm: Subtract multiple
copies of the smaller number from the larger in a single step. Even better,
we can divide the smaller number into the larger, taking the smaller
number and the remainder to start the next step. This has an additional
advantagewe will know automatically that the remainder is smaller

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

50 Introduction

than the original smaller number, so it will not be necessary to test to
see which of the two inputs is smaller:

TO FAST.EUCLID (N, R)

IF N = R THEN RETURN N

ELSE RETURN FAST.EUCLID (R, REMAINDER (N, R))

Note that Euclid's algorithm is very nearly the reverse of the "brute
force" method for finding the least common multiple given in subsection
1.4.1. In fact the algorithm gives us a new way of computing the LCM
of two numbers because of the formula

LCM(p, q) X GCD(p, q) = p X q,

which is true for any integers p and q. (See exercise 16.)
As a final remark we point out that, whereas the REMAINDER function

used in FAST . EUCLID is defined only for integers, the operations in the
original EUCLID procedure make sense for any numbers. So we can define
the GCD for any two numbers (not just integers) to be the value returned
by the EUCLID procedure. (Exercises 15-17 invite you to investigate the
properties of this generalized GCD.) We see here how the procedural
formulation of a concept can suggest new insights and directions for
exploring. Further explorations suggested by the EUCLID procedure are
illustrated in exercises 18-25.

Exercises for Section 1.4

Determine the symmetry of POLY with A = 350, 35, 37, 12h, 26. For
each value of A, find p and q such that A = 360p/q where p/q is a
fraction reduced to lowest terms. [A]

Using only integer angles, what are all the possible values of n for
which POLY can draw an n-sided figure? [HA]

[D] Show that the POLY symmetry determined by ANGLE = 360 - A
is the same as the symmetry of ANGLE = A. What about the symmetry
of ANGLE= 180A? [HA]

Consider the process of finding the least common multiple of A and
B. Show that the "brute force" method will find the same minimal
number n such that nA = RB as it will for n(Ax) = R(Bx) where x is
any number, and hence that LCM(Ax, Bx) = x X LCM(A, B). Use this
idea to show how to compute least common multiples of (noninteger)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Symmetry of Looping Programs 51

rational numbers. If A = p/q and B = ris, both fractions in lowest
terms, show how to pick x so that one can use the prime factorization
method to compute LCM(A, B). {AJ

We saw that A = 360R/n will produce an n-pointed figure for any
integer R relatively prime to n. But how many of these Rs actually
produce POLYs that look different? How many different POLYs are there
with n = 10, 36,37? How many in general? [A]

In solving the previous problem you may want to make use of the
Euler function, which is defined for positive integers n to be the number
of integers less than n and relatively prime to it. Euler gave a formula
for (n), which works as follows: Suppose that Pi, P2,... are the distinct
prime factors of n, that is n = (For example, 3960 = 2 X
32 5 X 11.) Then

(n) = n(1 i_)(1)

Use this formula to compute «i, 000, 000). [AI

[D Use the fact that, for R relatively prime to n, the multiples of R
include all the integers 1,2, . . . , n - i (mod n) to prove Fermat's Little
Theorem: If p is a prime and R is any positive integer less than p, then

= i (mod p). [HA]

[P] Fermat's Little Theorem lies behind a recently discovered way to
test by computer whether large numbers are prime. The idea is to start
with a number p, pick a random number a less than p, and compute
a1 (mod p). If the answer is not 1, then p is not prime. Conversely,
it is known that, in general, if p is not prime, then most of the numbers
a less than p will not satisfy a' = i (mod p). So if we test, say, 10
different choices for a and they all satisfy Fermat's equation, then we
can be virtually certain that p is prime. Implement this method in a
computer program and use it to find, say, the ten largest primes less
than one billion. (There are choices for p, called "Carmichael numbers,"
that will fool this test. They are nonprime, and yet satisfy the condition
a1 = i (mod p) for every a. But they are few and far between.)

[PI Write a procedure that, given a number n, returns a list of all the
primes dividing n. Use this together with Euler's formula of exercise 6
to produce a procedure that calculates the Euler function.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

52 Introduction

10. Given integers R and n, show that there exist integers p and q such
that pR + qn i if and only if, for any integer s, there exist integers
p5 and q such that p5R - q5n = s. [A]

li. [D] Prove that if we define the greatest common divisor d =
GCD(n, R) as the largest integer that divides both n and R, then d is the
smallest positive integer that can be expressed as (integer)R+(integer)n.
Show also that the multiples of R taken modulo n are precisely the
multiples of d. [H]

[D] Show that the EUCLID procedure works when its inputs are
positive integers. That is, show that it will always terminate and that
what it returns is in fact the GCD of its inputs.

[P] In subsection 1.2.2 we discussed the problem of writing a POLY

procedure that draws the figure once and then stops. We implemented
POLYSTOP using the "local" strategy of having the turtle count total
turning. Write a version of POLYSTOP which uses the "global" strategy
of taking the ANGLE input and computing in advance how many times
to run the basic loop. Can you design the program so that it works not
only for integer angles but for (noninteger) rational angles as well?

Show directly that if Euclid's algorithm returns d given R and n as
inputs, then there exist integers p and q such that pR + qn = d. [H]

[D] Show that the EUCLID procedure terminates whenever its inputs
are positive rational numbers, and thus allows us to extend the definition
of greatest common divisor to all positive rational numbers. What is the
"GCD" of and ? of a/b and c/d where a, b, c and d are integers?
What can you say about the behavior of the algorithm when the inputs
are not both rational? [A]

[D] Prove for integers p and q that GCD(p, q) X LCM(p, q) = p X q.
Does this formula hold as well for rational numbers (with GCD defined
as the result of the EUCLID procedure and LCM defined as indicated in
exercise 4)?

[DI What can you say about the (integer)R + (integer)n definition
of GCD as it relates to the GCD for rational numbers (defined as the
result of the EUCLID procedure)?

[D] Modify the EUCLID procedure to define a procedure DIO which
not only computes cl = GCD(n, R) but also returns integers p and q

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Symmetry of Looping Programs 53

such that pR + qn = d. The DIO procedure should take two inputs and
return a list of three numbers p, q, d. [HA]

[D] Show how to speed up the DIO procedure by using the, reduc-
tion method of the FAST .EUCLID procedure. Write the corresponding
FAST . DIO program. [HA]

The name DIO comes from "Diophantine equations." These are
equations which are to be solved for integer values of the unknowns. Use
your DIO or FAST . DIO procedures to find integers x and y which satisfy
the equation 17x + lily = 1; the equation 123456Tx + 765432ly = 1.
[A]

Let T denote the transformation (n, r) -# (r, n - r) which is used
by the EUCLID program. Show that the transformation S defined by
(x, y) - (x + y, x) is inverse to T in the sense that, for any pair (a, b),
T(S(a, b)) = S(T(a, b)) = (a, b). If we start with the pair (1, 0) and
repeatedly apply S we obtain

(1,0) 4(1,1) - (2,1) -+ (3,2) - (5,3) -# (8,5) -# (13,8)

The sequence of numbers formed by this operation is called the Fibonacci
numbers; that is,

F(0) = 0,F(1) = 1,F(2) = 1,F(3) = 2,F(4) = 3,F(5) = 5,F(6) = 8,

and so on. Use the fact that S and T are inverse to show that for any
integer n, F(n) and F(n - 1) are relatively prime. [A]

[P] Show that F(n) = F(n - 1) + F(n - 2) and hence that the
Fibonacci numbers can be generated by the procedure

TO FIB N

IF N = O RETURN i

IF N = i RETURN i

RETURN FIB (N-i) + FIB (N-2)

Why does this procedure run so slowly? Can you find a faster method
of computing the Fibonacci numbers? [A]

[DD[Expanding on the result of exercise 21, investigate the greatest
common divisor of F(n) and F(n + k). State and prove a theorem about
GCD(F(a), F(b)). [HA]

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

54 Introduction

[D} Use the DIO or FAST. DIO procedures (exercises 18,19) to solve
Diophantine equations of the form xF(n) + yF(n - 1) = i for integers
x and y. What is the solution in general? [HAI

[P] For any pair of numbers p, q we can define a new sequence of
numbers F(p, q; n) by applying the transformation S of exercise 21 begin-
ning with (p, q) rather than (1, 0). Write a program to generate these
sequences and investigate their properties. Can you express F(p, q; n) in
terms of the usual Fibonacci numbers? [A]

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Feedback, Growth, and Form

We watch an ant make his laborious way across a
wind- and wave-molded beach. He moves ahead,
angles to the right to ease his climb up a steep
dunelet, detours around a pebble, stops for a mo-
ment to exchange information with a compatriot.
Thus he makes his weaving, halting way back home.

His horizons are very close, so that he deals with
each obstacle as he comes to it; he probes for ways
around or over it, without much thought for future
obstacles. It is easy to trap him into deep detours.
Herbert Simon, The Sciences of the Artificial

Chapter 1 presented the rudiments of a computational view of geometry
and introduced some themeslocal versus global, intrinsic versus ex-
trinsic, state, and fixed instruction programs that will be important in
chapters to come. The most important theme of all, however, is that
turtle geometry is a mathematics designed for exploring. Now it's time
to explore. This chapter presents some ideas for using turtle graphics to
investigate mathematics in an experimental and phenomenon-oriented
way. Randomness, feedback systems, growth, differential games, and
designs based on recursion are all fruitful areas. With the initiation
provided here, we hope you will take the time to investigate some of
these topics in depth.

2.1 The Turtle as Animal

We introduced the turtle as a mathematical "animal"; let's pursue that
point of view by thinking of the turtle's motion as a behavior pattern
and the turtle programs as models of simple animal behavior. Turtle
geometry is particularly well suited to such modeling because of the
local and intrinsic ways we specify the turtle's movements. Expressing
motions in terms of FORWARDs and RIGHTs is a much more direct way of
dealing with an animal's behavior than, say, describing movements in
response to stimuli as changes in x and y coordinates.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

56 Feedback, Growth, and Form

Al = O Al = -10 Al = -10
A2 = 10 A2 = 5 A2 = 10

Figure 2.1
Sample paths generated by RANDOM. MOVE

2.1.1 Random Motion

Perhaps the simplest kind of motion to model with the turtle is random
motion (repeatedly going forward and turning random amounts). To
implement this in a procedure, let's assume that our computer language
has a random-number generator RAND (LOW,HIGH) that outputs a random
number between LOW and HIGH. Using this we can write a procedure that
takes four inputs specifying the ranges from which to select the inputs
to FORWARD and LEFT:

TO RANDOM.MOVE (Dl, D2, Al, A2)

REPEAT FOREVER

LEFT RAND (Al, A2)

FORWARD RAND (Dl, D2)

Even with this simple program, there is much to investigate. How do
the bounds on the FORWARDs or the turns affect the path? For instance,
unless you make Al negative, the turtle will always turn left and the
path will look roughly like a circle. In fact, except when Al is chosen to
be the negative of A2, the turtle's turning will be biased in one direction
or the other and this will be reflected in the shape of the path. Figure
2.1 shows some examples. How about the case where the turning is
unbiased? Would you expect the turtle to go off "to infinity"? Or will
it instead travel in a very large circle? More generally, can you say
anything about the radius of the "average path" as a function of the
bounds on the turns? One way to investigate these random motions is to
write a record-keeping procedure that repeatedly runs, say, loo rounds
of the RANDOM. MOVE loop and automatically records such statistics as
the turtle's heading and distance from the origin after those 100 rounds.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

The Turtle as Animal 57

Can you say anything about the average values of these quantities? (See
exercises 2 and 3.)

Random-motion procedures such as this will often run the turtle off
the edge of the display screen. Forcing the turtle to stay on the screen
suggests modifying the random motion to model the behavior of an
animal crawling in a box. To enable the turtle to do this, we'll supply
two new procedures: CHECK . FORWARD, which is just like FORWARD except
that it won't allow the turtle to move if the result would take it outside of
some fixed square box around the origin, and STUCK, which tells whether
or not the last move tried to place the turtle outside of the box.

The CHECK . FORWARD program works by moving the turtle "invisibly"
to the new position, then using a subprocedure OUT. OF . BOUNDS? to check
whether the new position is within bounds, and finally redoing the move
visibly only if it is within bounds. This procedure makes use of some
new operations in our turtle graphics system. HIDETURTLE causes the
turtle indicator not to be displayed; SHOWTURTLE restores the indicator;
XCOR and YCOR output, respectively, the x and y coordinates of the
turtle; TURTLE. STATE outputs (as a list) the position and heading of
the turtle; and SETTURTLE takes as input a list such as is produced by
TURTLE. STATE and restores the turtle to that state:

TO CHECK.FORWARD DISTANCE

OLD.POSITION TURTLE.STATE

PENUP

HIDETURTLE

FORWARD DISTANCE

FORWARD.FAILED +. OUT.OF.BOUNDS?

SETTURTLE OLD. POSITION

PENDOWN

SHOWTURTLE

IF NOT FORWARD.FAILED THEN FORWARD DISTANCE

TO STUCK

RETURN FORWARD. FAILED

TO OUT.OF.BDUNDS?

IF EITHER

ABS(XCOR) > BOXSIZE

ABS(YCOR) > BOXSIZE

THEN RETURN "TRUE"

ELSE RETURN "FALSE"

(ABS is the absolute value function.)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 2.2
(a) Edge "reflection" generated by IF STUCK THEN RIGHT 180. (b) Edge-following
behavior generated by IF STUCK THEN WRIGGLE.

We can use these procedures to model appropriate behaviors that
will keep the turtle in the box. Here, for example, is a version of
RANDOM. MOVE that has the turtle turn 180° whenever it runs into an
edge:

TO RANDOM.MOVE (Dl, D2, Al, A2)

REPEAT FOREVER

LEFT RAND (Al, A2)

CHECK.FORWARD RAND (Dl, D2)

IF STUCK THEN RIGHT 180

Figure 2.2a shows a sample path. A second possibility for edge behavior
is to have the turtle turn a little at a time, until it can go forward again.
To do this, change the last line in the above procedure to

IF STUCK THEN WRIGGLE

where WRIGGLE is defined as

TO WRIGGLE

REPEAT

RIGHT i

CHECK.FORWARD 1

UNTIL NOT STUCK

58 Feedback, Growth, and Form

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

The Thrtle as Animal 59

Figure 2.2b shows how this variation, incorporated into a random-motion
procedure, causes the turtle to spend most of its time wandering along
the edges of the box. You may have observed the similar behavior of
a real insect trapped in a box. Of course, with a real insect, this
behavior is often interpreted as the insect trying to get out of the
box by following the walls. The turtle program calls into question
the validity of such anthropomorphizing. If edge-following behavior
can be produced by a simple combination of random motion plus wall
avoidance, are we really justified in saying that the insect is "trying" to
follow the edge? Could we legitimately make this claim about the turtle?

2.1.2 Directed Motion: Modeling Smell

We can make our simulation more elaborate by allowing the turtle's
behavior to be affected by some stimulus. For example, we could imagine
that there is some food located in the box with the turtle and design
mechanisms that allow the turtle to find the food "by sense of smell."
There are many different ways we could provide turtles with information
corresponding to an ability to smell. For example, the "amount of smell"
could be a value that depends on how far the turtle is from the food (the
larger the distance, the weaker the smell); or the turtle might not sense
any particular level of smell, but at each move be able to detect whether
the smell is getting stronger or weaker.

We'll begin with the second possibility. This "stronger-weaker" kind
of smell can be modeled by

TU SMELL

IF DISTANCE.TO.FOOD > DISTANCE.LAST.TIME

THEN RESULT "WEAKER"

ELSE RESULT - "STRONGER"

DISTANCE. LAST . TIME - DISTANCE. TO. FOOD

save the current distance to use in the next comparison
RETURN RESULT

How can the turtle use this information to locate the food? One pos-
sibility is this: If the turtle finds that the smell is getting stronger, it
keeps going in the same direction; otherwise it turns:

TO FIND.BY.SMELL1

REPEAT FOREVER

FORWARD i

IF SMELL = "WEAKER" THEN RIGHT i

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 2.3
Paths generated by FIND.BY.SMELL2.

Experimenting further, we can add a parameter to adjust the size of the
turtle's turns. This leads to an interesting study of how the geometry
of the path varies with the turn angle. (See figure 2.3.)

TO FIND.BY.SMELL2 (TURN)

REPEAT FOREVER

FORWARD i

IF SMELL "WEAKER" THEN RIGHT TURN

A more realistic simulation would also include some of the random
motion of section 2.1.1:

TO FIND.BY.SMELL3 (Dl, D2, SMELL.TURN, RAND.TURN)

REPEAT FOREVER

FORWARD RAND (Dl, D2)

LEFT RAND (- RAND. TURN RAND. TURN)

IF SMELL = "WEAKER" THEN RIGHT SMELL.TURN

In this procedure the turtle's motion is governed by two opposing ten-
dencies: a "random motion" scaled by RAND. TURN and a "directed mo-
tion" scaled by SMELL . TURN. This can be highlighted by adjusting the
relative sizes of the two parameters. As an experiment, see how large
RAND. TURN must be with respect to SMELL . TURN before the random mo-
tion dominates completely and the turtle makes no discernible progress
towards the food. (See figure 2.4.)

A different possibility for sensing "smell" is to have the turtle respond
to an intensity directly, rather than to a change in intensity. Biologists
have suggested various simple mechanisms by which animals can use

60 Feedback, Growth, and Form

TURN = 20 TURN = 60 TURN = 120

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

The Turtle as AnimaI 61

+

SMELL.TURN = 60 SMELL. TURN = 60 SMELL.TURN 60

RAND.TURN = 10 RAND.TURN = 30 RAND.TURN = 120

Figure 2.4

FIND.BY.SMELL3 illustrates degeneration of the algorithm under increasing random-
ness.

such intensity information to approach or avoid stimuli. Wood lice, for
example, are observed to aggregate in moist places and avoid dry places.
It is believed that they move in random directions, but that the moisture
level governs their speedthey move more slowly when it is damp and
hence spend most of their time in moist regions. This mechanism for
aggregation is called orthokinesis. A different mechanism, klinokinesis,
is claimed to govern the behavior of paramecia in aggregating in dark
areas. In klinokinesis, the animal's speed is constant, but the rate of
turning varies with the intensity of the stimulus. (For more informa-
tion on these and other orientation mechanisms, see G. Fraenkel and
D. Gunn, Orientation in Animals [New York: Dover, 1961].) Try writ-
ing procedures embodying these mechanisms, and then try inventing
new mechanisms. Good questions to guide your exploration are: How
"efficient" is your method (how long does it take the turtle to reach the
stimulus point)? How does the turtle's path change as you vary the ini-
tial position and heading, or as you vary the parameters to the program?
How does the mechanism degenerate as you incorporate some random-
ness into the turtle's motion (for example, as in the FIND.BY.SMELL3
procedure above)? Will even a slight amount of randomness destroy the
turtle's ability to reach the goal, or is your mechanism relatively stable
with respect to random distortions?

In a more abstract vein, investigate the mathematical properties of
simple POLYlike programs, but think of some aspect of the turtle's motion
as governed by the distance from some chosen point. Try, for example,

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

VARY.STEP 1500 lo

Figure 2.5
Samples of paths generated by VARY. STEP and VARY. TURN.

having the turtle turn a constant angle while going forward a distance
that depends on the distance from the point:

TO VARY.STEP (SIDE, ANGLE)

REPEAT FOREVER

FORWARD (FACTOR * SIDE)

LEFT ANGLE

Or take a constant FORWARD step and vary the turn:

TO VARY.TURN (SIDE, ANGLE)

REPEAT FOREVER

FORWARD SIDE

LEFT (FACTOR * ANGLE)

FACTOR here can be something like

TO FACTOR

RETURN (1 I DISTANCE.TO.CHOSEN.POINT)

Figure 2.5 shows some sample paths. As you can see, the procedures
seem to do different sorts of things. VARY. STEP tends to draw spirals,
whereas VARY. TURN tends to draw bounded figures. Investigate these
programs and come up with some conjectures about their behavior. Can
you prove your conjectures?

2.1.3 Modeling Sight

As with smell, the first step in providing turtle with simulated sight is to
decide what information the "eye" should receive from the environment.

VARY.TURN 10 2000

62 Feedback, Growth, and Form

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

The Turtle as Animal 63

Figure 2.6
KEEP.A.BEARING: ANGLE = 60.

We could hardly begin to model the complexity of human vision. A much
simpler model ignores color, shape, and texture and registers merely the
intensity of light reaching the eye. This kind of "sight" is not so different
from the "smell" discussed above. Each sense receives some kind of
intensity information from the environment. The major difference is
that sight is directional; it depends on how the turtle is facing with
respect to the stimulus. Algorithms for locating an object by sight are
therefore different from "smelling something out."

Facing a Stimulus
The first model for sight assumes that any creature able to see a light is
able to turn to face that light. (See exercise lo.) Investigate what new
things the turtle can do when given the ability to FACE a named point.
For example, getting to the point is easy: Simply face the point and go
forward. (But how does the turtle know when to stop?) Another use for
the FACE command is to have the turtle move while keeping some point
at a fixed bearing. The following procedure makes the turtle walk with
a fixed bearing of ANGLE with respect to a fixed POINT:

TO KEEP.A.BEARING POINT ANGLE

REPEAT FOREVER

FACE POINT

LEFT ANGLE

FORWARD i

If you try this procedure (figure 2.6) you will find that it causes the
turtle to spiral about the point. Does this remind you of anything? How
about a moth getting trapped by a light? Can you think of a reason
why a moth would be trying to keep a light at a fixed bearing? Some

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

600

Left eye
sees here

Figure 2.7
Fields of vision for two-eye model.

people believe that moths and other night-flying insects have learned to
fly along straight paths by keeping the moon at a constant bearing as
they fly. Keeping a very distant light like the moon at a fixed bearing
would indeed make the insects fly straight. When they confuse the moon
with a nearby light, the fixed-bearing mechanism causes them to spiral.

A Two-Eye Model
The next model focuses on how a creature might use vision in order to
face a point. Assume that the turtle has two eyes, each with its own
field of vision, as shown in figure 2.7. We give the turtle the ability to
tell whether a point is within each eye's field of vision:

TO RIGHT.EYE.SEES POINT

IF BEARING(POINT) > 300 THEN RETURN "TRUE"

IF BEARING(POINT) < 10 THEN RETURN "TRUE"

RETURN "FALSE"

TO LEFT.EYE.SEES POINT

IF BEARING(POINT) > 350 THEN RETURN "TRUE"

IF BEARING(POINT) < 60 THEN RETURN "TRUE"

RETURN "FALSE"

(These procedures use a subprocedure called BEARING that outputs the
angle that the turtle would need to turn left in order to face a given
point. Exercise 10 outlines how BEARING can be implemented.)

Right eye
sees here

64 Feedback, Growth, and Form

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

The Turtle as Animal 65

Figure 2.8

Behavior of HEAD. FOR.

The turtle will know that it is facing roughly in the direction of a
named point when the point lies in the field of vision on at least one
side. So, as the turtle moves, it should keep checking that it can still
see the point. Otherwise it turns until it can see the point:

TO HEAD.FOR POINT

REPEAT FOREVER

IF EITHER

LEFT.EYE.SEES (POINT),

RIGHT. EYE. SEES (POINT)

THEN FORWARD lo

ELSE LEFT 10

It may seem amazing that a turtle following this procedure manages to
reach the specified point despite the fact that its way of heading for the
point is so inaccurate. (See figure 2.8.) This illustrates the effectiveness
of a feedback mechanismconstant adjustment can often compensate
for lack of accuracy. You might try combining this mechanism with
some of the random-motion procedures of subsection 2.1.1.

A Two-Eye Model With Intensity
A more elaborate model for vision registers not only the presence of
a light source in the visual field, but also the intensity that each eye
receives from the source. This intensity depends on the strength of the
source, the distance of the source from the eye, and the angle at which
the light strikes the eye. The intensity is greatest when the light hits the
eye straight on and tapers off to zero as the light source moves toward
the edge of the visual field.

Suppose we have procedures INTENSITY.LEFT and INTENSITY.RIGHT

that output the intensity each eye receives from a light source. (We'll

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 2.9
Path generated by FIND.BY.SIGMT.

worry about how to design these INTENSITY procedures later.) There is
a simple yet effective way to incorporate such intensity information in a
feedback mechanism to make the turtle approach the light source:

TO FIND.BY.SIGHT SOURCE

REPEAT FOREVER

FORWARD 1

IF INTENSITY.LEFT(SOURCE) > INTENSITY.RIGHT(SOURCE)

THEN LEFT 10

ELSE RIGHT 10

The turtle walks forward while trying to keep the amount of light
received at both eyes in balance. If the turtle sees more light to its
right, it turns slightly to the right. If it sees more light to its left, it
turns slightly to the left. (See figure 2.9.)

Some animals may actually use this mechanism for approaching light
sources. Biologists have obtained experimental evidence for this conclu-
sion by taking an animal and masking one of its eyes. What happens
when the animal tries to approach the light? You can simulate this ex-
periment by modifying INTENSITY.LEFT to always return O and have
the turtle follow the FIND.BY.SIGHT procedure. Now the turtle will al-
ways turn right, and will therefore travel in a circle. Biologists call this
behavior "circus movement." It has been observed in experiments with
numerous species of insects.

A variation of this experiment is to modify INTENSITY. LEFT to output
half its normal value. (This corresponds to an animal with weak vision
in one eye.) What kind of path does FIND. BY. SIGHT produce now? Does
the animal still reach the light? How does the path degenerate to a circus
movement as the eye becomes weaker and weaker?

Feedback, Growth, and Form66

+

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

The Turtle as Animal 67

Finally, consider what happens when there are two or more light
sources. The intensity for each eye can be found by adding together
the intensities from the individual sources:

TO FIND.BY.SIGHT2 (SOURCE1, SOURCE2)

REPEAT FOREVER

FORWARD 1

TOTAL. LEFT 4- INTENSITY. LEFT (SOURCE1)

+ INTENSITY. LEFT (SOURCE2)

TOTAL . RIGHT INTENSITY. RIGHT (SOURCE1)

+ INTENSITY. RIGHT (SOURCE2)

IF TOTAL.LEFT > TOTAL.RIGHT

THEN LEFT 10

ELSE RIGHT 10

How does the turtle behave? Does it go to the stronger light? Between
the lights? Keep records of what happens for sources with different
strengths and for different initial positions of turtle and sources. This
"two-light experiment" is often performed with real insects.

The intensity procedures used in these projects can be designed accord-
ing to a model given in the book by Fraenkel and Gunn mentioned above.
They compute the intensity of light falling on the eye as (S/D2) cosA
where S is the strength of the source, D is the distance from the source,
and A is the angle at which light from the source strikes the eye. (See
figure 2.10.) The turtle procedure based on this would be

TO INTENSITY.LEFT SOURCE

IF NOT LEFT.EYE.SEES(SOURCE) THEN RETURN O

FACTOR 4- STRENGTH / (DIST(SOURCE) 2)
ANGLE 4- BEARING (SOURCE) - 45

RETURN (FACTOR * COS(ANGLE))

STRENGTH here is a parameter you supply to indicate the intensity of
the source. Note the computation of ANGLE, which reflects the fact that
the left eye is offset 45° from the turtle's heading. INTENSITY. RIGHT is
implemented in a similar fashion.

Exercises for Section 2.1

1. [PJ In the RANDOM.MOVE procedure of 2.1.1, how does the turtle's
path change if the turning is generated by LEFT RAND (0,50) followed
by RIGHT RAND(0,50) rather than LEFT RAND(-50,50)? How is the

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

68 Feedback, Growth, and Form

Light source
of strength SI,

Figure 2.10
Intensity of light seen by eye is (S/D2) cos A.

distribution of numbers produced by RAND (-50, 50) different from that
of RAND(0,50) - RAND(O,50)? (A]

[PD) Starting with the turtle facing straight up, run the RANDOM. MOVE

procedure until the turtle exceeds distance n from the start, that is,
crosses a circle of radius n centered at the starting point. At what point
did the turtle intersect the circle? Repeat this process over and over
and study the distribution of intersection points on the circle. What
is its "average value"? How does the distribution change as n varies?
Answer the same sort of questions about the number of steps taken
before crossing the circle. [H)

[PDD] If the turtle follows RANDOM. MOVE with the turn angle evenly
distributed between 10 and 10, will you expect it to go off to infinity,
or to travel in a large circle? Make some studies of this phenomenon.
For example, graph the turtle's distance from the origin after n steps. Is
there an average graph for many tries of this experiment? Alternatively,
if the angle is not evenly distributed, the program will cause the turtle
to tend to walk in circles. But do the circles wander off to infinity? How
fast?

[P) Investigate randomized POLY procedures such as

TO RANDOM.POLY (SIDE, ANGLE)

REPEAT FOREVER

FORWARD SIDE

LEFT (ANGLE * RAND(LOW, HIGH))

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

The Thrtle as Animal 69

LP] In the FIND.BY.SMELL2 procedure of 2.1.2, how does the time
required to reach the food vary with the angle the turtle turns? In the
randomized FIND.BY.SMELL3 procedure, what is the average time as a
function of the SMELL . TURN and RAND. TURN? (Do some experiments and
take statistics.)

[P] Implement procedures for orthokinesis and klinokinesis. Which is
more efficient? Which is more stable under adding a bit of randomness?
Does the stability depend on the kind of randomness?

[P] Play around with the VARY.STEP procedure of 2.1.2. Does the
turtle always spiral inwards or outwards? Does this depend on the initial
position or heading with respect to the fixed point? Try also taking
different values for FACTOR, such as making it directly proportional to
the distance from the point or inversely proportional to the distance
squared.

[P] What can you say about the VARY. TURN procedure? Does the
turtle always stay within a bounded distance from the fixed point? Try
this also with the variations on FACTOR, as in exercise 7.

[P] Try procedures like VARY. STEP and VARY. TURN, oniy this time
where FACTOR depends on the change in distance (as with the SMELL

procedure of 2.1.1). For instance, suppose FACTOR is equal toDISTANCE-
DISTANCE. LAST . TIME. Consider the procedure

REPEAT FOREVER

FORWARD SIDE

LEFT FACTOR

Prove that this can never draw a simple closed figure. [HA]

[P] Implement the FACE and BEARING procedures used in the sight
programs of 2.1.3. BEARING should return the amount the turtle needs to
turn left in order to face the point. Then FACE can be immediately imple-
mented as LEFT(BEARING(POINT)). BEARING, in turn, can be imple-
mented in terms of the turtle's heading and another function, TOWARDS,

which outputs the heading of the line directed from the turtle to the
point. This can be computed using an arctangent function. [A]

[P] Make a careful investigation of the two- (or more) light experi-
ment. How does the turtle's path vary with the relative intensities of
the light?

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

70 Feedback, Growth, and Form

12. [P] Suppose the turtle lives in a square room with a light at each
corner. Instead of using a rectangular coordinate system, the turtle can
"get its bearings" by measuring the observed angles between the lights.
Suppose the turtle starts at some point P and records the observed
angles. Now move the turtle to a different point. Design a simple
feedback algorithm that enables the turtle to return to P by moving
and watching how the angles change.

2.2 Turtles Interacting

One natural extension of the previous section's "turtle biology" is to
consider multiple turtles and the interactions produced by simple algo-
rithms. As we shall see, even simple algorithms may lead to complex
phenomena, and a study of these phenomena can be an invitation to the
theory of "differential games."

2.2.1 Predator and Prey

Consider how the FIND. BY. SMELL mechanism of subsection 2.1.2 would
behave if the food were also moving, as in the case of a predator trying
to catch dinner. There are many possible variations to try. Suppose, for
example, that the hunted creature, unaware of the predator's intentions,
moves round and round in a circle and that the predator follows the
prey according to the FIND.BY.SMELL2 procedure of 2.1.2. One way to
implement this interaction is to write separate procedures for predator
and prey that describe how each creature generates a single forward
step:

TO PREY.STEP (SPEED, TURN)

FORWARD SPEED

RIGHT TURN

TO PREDATOR.STEP (SPEED, TURN)

FORWARD SPEED

IF SMELL = "WEAKER" THEN RIGHT TURN

Now supply a monitor procedure called EXECUTE. TOGETHER that ex-
ecutes these two procedures alternately, over and over:

TO EXECUTE.TOGETHER (PREDATOR.PROCESS, PREY.PROCESS)

REPEAT FOREVER

set the turtle at the predator state and
execute the predator's procedure

EXECUTE. STEP (PREDATOR .PROCESS, PREDATOR . STATE)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Turtles Interacting 71

save the predator state for next time
PREDATOR.STATE TURTLE.STATE

execute the prey's procedure
EXECUTE. STEP (PREY. PROCESS, PREY. STATE)

;save the prey state
PREY.STATE TURTLE.STATE

The inputs to this procedure are to be the STEPs above, with their inputs.
For instance,

EXECUTE. TOGETHER ("PREY. STEP (1,1)", "PREDATOR. STEP (2,90)")

makes the prey and predator execute simultaneously.
The EXECUTE. STEP procedure is responsible for executing the process

in the right place. It makes the turtle follow a given process starting
from a given state.

TO EXECUTE.STEP (PROCESS, STATE)

with the pen up move the turtle to the starting state
PENUP

SETTURTLE STATE

put the pen down and execute the process
PENDOWN

EXECUTE PROCESS

At any point during the process, the variables PREDATOR. STATE and
PREY.STATE specify the position and heading of the creatures. Set
these to their initial values before starting the EXECUTE . TOGETHER proce-
dure. (Note: Some computer languages have built-in facilities for parallel
processing, which eliminate the need for such a EXECUTE. TOGETHER pro-
cedure. But since these languages are not yet widespread, we show how
to implement this in a more conventional language. Also, see appendix
A for details about the EXECUTE command.)

Figure 2.11 shows the result of the two procedures with the predator's
TURN equal to 900 and with predator moving twice as fast as prey. As
you can see, the FIND. BY. SMELL mechanism, which works so well with
a fixed food source, does very poorly when the food is moving. The
geometry of the path, however, is interesting. Notice that, after an initial
segment, the predator's path is closed. Can you see why? Investigate this
phenomenon for different TURN angles in the PREDATOR. STEP procedure
and also for varying relative speeds of predator and prey.

Now conduct a similar investigation with some of the other animal-
orientation mechanisms of section 2.1. Do they all do so poorly when

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

72 Feedback, Growth, and Form

Figure 2.11
Closed-path phenomenon. Predator uses FIND. BY. SMELL with TURN 90; prey moves
in circle. Predator speed is twice prey speed.

the food is moving? Or consider the use of these simple algorithms
as avoidance mechanisms. For example, set up a situation in which
a predator uses one of the sight algorithms of 2.1.3 to chase another
creature that is using an AVOID . BY. SMELL procedure. (Note: To convert
FIND.BY.SMELL to AVOID.BY.SMELL, simply modify the procedure so
that the creature will turn whenever the smell is getting stronger.) Any
such combination of the behaviors illustrated in section 2.1 can serve as
the basis for a project.

2.2.2 Following and Chasing

In a slightly different framework, we can consider "chase and evade"
strategies for two turtles. The simplest strategy is for the chasing turtle
to run directly towards the evader, and for the evader to run directly
away from the chaser. More interesting is the situation when both
creatures are constrained to stay within a square box. There are lots
of possibilities for projects here. Begin by programing simple strategies
using the EXECUTE. TOGETHER framework of 2.2.1. Now make the chaser
a bit smarter so that he can generally catch the evader--for example, by
driving him into a corner. Now make the evader smarter, so that he can
avoid the trap. Now make the chaser smarter still, and so on. When you
get some really clever programs, modify the setup so that you control
one of the creatures by hand and the computer controls the other. Are
your clever procedures more skilled at the chase-evade game than you
are? As a test of skill and strategy, try varying the relative speeds of
chaser and evader. If they both move at the same speed, can the evader
always avoid being caught?

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Turtles Interacting 73

Figure 2.12
Spiral paths generated by four "bugs" starting at vertices of square.

It's also interesting to examine the paths generated by interacting
creatures. One example is the widely known mathematical problem
of the four "bugs" who start at the vertices of a square and move at
the same speed, each one following the bug to its right. Set this up
using the EXECUTE. TOGETHER procedure (suitably modified to handle
four creatures) and the FOLLOW mechanism:

TO FOLLOW THAT.BUG

FACE THAT.BUG

FORWARD i

Now make bug i follow bug 2, bug 2 follow bug 3, bug 3 follow bug 4,
and bug 4 follow bug 1:

EXECUTE.TOGETHER "FOLLOW BUG2" "FOLLOW BUG3"

"FOLLOW BUG4" "FOLLOW BUG1"

Figure 2.12 shows the paths generated by the four bugs. As you can
see, they all meet at a single point. One notable property of the"four
bugs" situation is that the length of the path traveled by each bug is
equal to the side of the original square. See if you can prove that.
Modify FOLLOW to keep track of how far each bug moves, and compare
the computed value with the theoretical value.

Here is another interesting chase phenomenon with two creatures, the
chaser and the evader. The chaser heads directly towards the evader:

TO CHASE

FACE EVADER

FORWARD CHASE.SPEED

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 2.13
Stable configuration generated by interaction of CHASE and EVADE.

But the evader, instead of running directly away, heads at a constant
900 bearing from the chaser:

TO EVADE

FACE CHASER

RIGHT 90

FORWARD EVADE. SPEED

When the two creatures move at the same speed, the chaser always
catches up, as you might expect. But when the evader's speed is in-
creased, both chaser and evader begin to spiral in towards each other.
The spirals eventually degenerate into closed circles (see figure 2.13),
which are stable configurations for the chaser-evader situation. Even
though the algorithm seems "directed," the creatures end up retracing
their paths over and over.

A multiple-turtle setup can also be used to investigate some of the
phenomena in the area of "differential games," which has to do with
finding optimal strategies in situations similar to "chase and evade." An
example is provided by a "target defending" game consisting of two
players and a target. The attacker's object is to get as close to the
target as possible; the defender's object is to intercept the first player as
far from the target as possible. Assume that both players have the same
speed and that the defender starts out closer to the target. It turns out
that this situation has a simple optimal strategy, which is the same for
both players: Each time you move, head for the point that is closest to
the target and that lies on the perpendicular bisector of the line joining
your position to your opponent's (see exercise 11). Of course, if both
players are computerized and move with optimal strategy (figure 2.14a)
the resulting paths aren't very interestinga better idea might be to
arrange things so that you control one player and the computer controls

74 Feedback, Growth, and Form

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Turtles Interacting 75

Defender Target
I

Defender Target
+

Attacker Attacker

Figure 2.14
Target-defending game. (a) Both players following optimal strategy. (b) Attacker
manually controlled; defender computer-controlled following optimal strategy.

the other (see figure 2.14b). Try playing against the computer both on
attack and on defense. How well can you do in comparison with the
theoretical optimum?

Books on differential games suggest many more situations that can be
made into games between a person and a computer. In general these
are very difficult to analyze for optimal strategies; the target-defending
game explained above is unusually straightforward. There is a way to
simplify the situation: Restrict all creatures to move on a square grid;
that is, only allow turns that are multiples of 900 and distances that
are multiples of some fixed length, or, alternatively, specify that at each
step a creature can move only to an adjacent square in the grid.

Exercises for Section 2.2

[PD] Can you verify, as asserted in subsection 2.2.1, that a predator
using FIND. BY. SMELL to chase a creature moving in a circle will even-
tually travel in a closed path? How does this depend on the angle turned?
On the relative speeds of predator and prey? On the initial positions?

[P] Set up a predator using FIND.BY.SIGHT (subsection 2.1.3) to chase
a prey using AVOID. BY. SMELL. Does he catch him if the two creatures
have equal speeds? Does this depend on the angles that the creatures
turn? What happens as the speeds vary?

[P] Implement a general EXECUTE . TOGETHER facility that can handle,
say, two, three, or four creatures simultaneously. Notice that the pro-
cedure given in the text draws only the creatures' paths and not the
creatures themselves. Maybe you'd like to improve upon this.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

76 Feedback, Growth, and Form

[P] Implement a general "chase-evade" system that allows you to
specify procedures to guide both chaser and evader, or to control either
creature by hand

[PD] Set up the "four bugs" simulation. Have the system calculate
the distance traveled by each bug. Does your result agree with the claim
in the text that this distance is equal to the side of the original square?
Can you prove this claim?

[PDD] Suppose that, instead of four bugs, we have three bugs starting
in the vertices of an equilateral triangle. How far does each bug travel
now? Generalize this to consider n bugs starting at the vertices of a
regular n-gon. Given a formula for the distance traveled by each bug in
terms of the side of the n-gon, and check your formula by doing some
computer simulations. [A]

[P] Make up and investigate some variations on the "four bugs"
problem. For example: Suppose the bugs start on a figure that is not so
symmetric. (How about a rectangle?) Suppose one bug goes faster than
the other. Suppose instead of each bug following the one to its left, they
follow each other in some other order.

[P] What kinds of initial conditions, speeds, and following mechanisms
will ensure that all bugs eventually meet at one point?

[PD] Investigate the modified chase-evade simulation that yields the
stable circles of 2.2.2, assuming that the evader movers faster than the
chaser. Why does the process stabilize? When it does stabilize, what is
the approximate distance of chaser from evader? How does this distance
depend on the speeds of chaser and evader? Give a formula for the
distance. [HA]

[P] Find other chase-evade pairs that produce stable configurations.

In the "target-defending" game, give a formula for the coordinates
of the point to head for when following the optimal strategy, and use
this to implement the strategy on the computer. [HA]

[D] Analyze the target-defending game in the case where the two
players have different speeds. What is the optimal strategy for each
player? [HA]

[P] Carry out a detailed study of chase-evade for creatures moving on
a grid. Invent strategies and counterstrategies. Can the evader always
avoid getting caught if the two creatures move at equal speeds? If they
move at different speeds?

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Growth 77

Figure 2.15
Equiangular spiral formed by ESPI with ANGLE = 20, SCALE = 1 .1.

2.3 Growth

Besides simulating animal behavior, another good source of turtle biol-
ogy projects is modeling patterns of growth. In this section we'll examine
two models: the equiangular spiral, which emerges in the shapes of shells
and horns; and models for branching in the growth of trees.

2.3.1 Equiangular Spirals

We've already seen in section 1.1 how to transform the POLY program

TO POLY SIDE ANGLE

FORWARD SIDE

LEFT ANGLE

POLY SIDE ANGLE

into a program for drawing spirals:

TO POLYSPI (SIDE, ANGLE, INCREMENT)

FORWARD SIDE

LEFT ANGLE

POLYSPI (SIDE + INCREMENT, ANGLE, INCREMENT)

Here is another way to make a spiral: Rather than increasing the side by
adding a fixed increment, multiply the side by a constant scale factor:

TO EQSPI (SIDE, ANGLE, SCALE)

FORWARD SIDE

LEFT ANGLE

EQSPI (SIDE * SCALE, ANGLE, SCALE)

This spiral (shown in figure 2.15) is called an equiangular spiral (also
sometimes called a logarithmic spiral). Connecting the vertices of the
spiral to a central point shows that the spiral can be generated by suc-

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 2.16
The shell of the chambered nautilus clearly exhibits the spiral-growth phenomenon.

cessions of similar triangles, each one built upon the previous. This
principle of constructing a pattern through the accumulation of similar
shapes lies behind the spiral's appearance in many biological forms,
especially in shells and horns. The nautilus shell, shown in figure 2.16,
gives a clear illustration. The entire shell is constructed as a sequence of
"chambers," each chamber built on the previous chamber and similar to
it. (The chambers are similar because the creature doesn't change shape
as it moves from chamber to chamber; it just grows.) The result is that
corresponding points of successive chambers lie on equiangular spirals.

We'll exhibit a turtle program that mimics this kind of equiangular
growth, using quadrilateral chambers. Each quadrilateral, as indicated
in figure 2.17a, will be specified to the program by three sides and two
angles. If the turtle starts in the lower left corner, the base and sides of
the quadrilateral can be drawn by

TO CHAMBER (BASE, Si, S2, Al, A2)

save the position of the lower left vertex
LOWER.LEFT TURTLE.STATE

draw the base and right side and save the
position of the upper right vertex (see below)

FORWARD BASE

LEFT A2

FORWARD S2

ÚPPER.RIGHT TURTLE.STATE

return to the lower left vertex and draw the left side
PENUP

SETTURTLE LOWER. LEFT

PENDOWN

LEFT Al

FORWARD Si

78 Feedback, Growth, and Form

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

SI

BASE

Specifying a quadrilateral for the
CHAMBER procedure.

Figure 2.17
The SPIRAL. GROWTH procedure.

At the end of this. procedure the turtle is sitting at the upper left corner
of the chamber, which is the same as the lower left vertex of the next
chamber. To prepare for drawing the next chamber we must point the
turtle along the base of the next chamber, that is, point the turtle
towards the upper right vertex of the chamber just drawn. We can do
this using the FACE procedure of section 2.1, whose implementation is
outlined in exercise 10 of that section. Having done this, we are ready
to draw the next chamber. The angles of the next chamber are the same
as before. The base of the next chamber is the top edge of the previous
chamber, and the size of the next chamber is determined by the ratio
of the old base to the new base. All together, the program for spiral
growth is

TO SPIRAL.GROWTH (BASE, Si, 52, Al, A2)

draw one chamber and face along the edge of the new chamber
CHAIABER (BASE, Si, S2, Ai, A2)

FACE UPPER.RIGHT

the length of the next chamber's base is the distance
from the current location to the upper right corner of
the chamber just drawn

NEXT.BASE # DISTANCE (UPPER.RIGHT)

compute the ratio of the sides of the new chamber to the
sides of the previous chamber

R NEXT.BASE/BASE

now repeat the process, using as inputs
the sides and angles of the new chamber

SPIRAL.GFtOWTH (NEXT.BASE, Si * R, S2 * R, Al, A2)

SPIRAL.GROWTH (10,10,15,90,90)

Growth 79

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 2.18
Demonstration that curves of equiangular spiral are everywhere the same. Chunk B
is the same as chunk A blown up by a factor of 3.

The recursive structure of the program implies that each chamber generates
a new chamber. There is no stop rule and the program goes on forever.
Whether the chambers increase or decrease in size depends on the initial
sides and angles. A sample "shell" drawn by this program is illustrated in
figure 2.17.

Growing Turtle Geometry
Equiangular spirals underlie uniform growth such as the SPIRAL . GROWTH
shown above in the same way that a circle underlies any turtle program
that does the same thing over and over. The reason for both of these
facts becomes clearer when one describes the equiangular spiral and the
circle as curves that are "everywhere the same." In the case of a circle,
that means any chunk of the circle can match any other chunk of the
circle if you are allowed to move and turn the first chunk. In the case
of the spiral, one must allow changing scale (making a bigger or smaller
model of a piece), in addition to moving and turning, to show that one
piece matches another. See figure 2.18.

One can augment turtle geometry to make scale changes by introduc-
ing a new "scaled forward" command and a GROW command to change
scale:

80 Feedback, Growth, and Form

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Growth 81

TO S.FORWARD DISTANCE

FORWARD (SCALE * DISTANCE)

TO GROW FACTOR

SCALE i- (SCALE * FACTOR)

SCALE should now be considered a part of the turtle stateit's a kind
of "size" of the turtle that determines the size of the next step just as
heading determines the direction of the next step. (SCALE should start
equal to 1.)

The analog to POLY is precisely EQSPI:

TO EQSPI (SIZE, ANGLE, FACTOR)

REPEAT FOREVER

S.FORWARD SIZE

RIGHT ANGLE

GROW FACTOR

You should be able to show that any looping program which involves
only S . FORWARD, RIGHT, and GROW will have an EQSPI skeleton, just as
POLY is the skeleton for looping programs without GROW (see exercise
10). Incidentally, a circle is an "equiangular spiral with no growth" in
the same way a line is "a circle with no turning." Finally, notice that
the chambered growth shown in figure 2.17 ensures that the growth is
uniform by having the bottom edge of one chamber be related to the
bottom edge of the preceding precisely as the ratio of top to bottom
edge of the previous chamber. Because the chambers are constructed to
be similar, that ratio never changes.

2.3.2 Branching Processes: A Lesson in Recursion

A different kind of growth pattern we can mimic with turtle graphics
is the branching process that characterizes the growth of trees. We'll
start by drawing a very regular binary tree, that is, a tree in which
each branch sprouts two more branches. We'll make the length of each
sprouted branch half that of the parent. Conceptually, each branch
consists of a straight line, with two more branches at its end. Notice the
fundamentally recursive nature of this descriptiona branch consists of
something (the stem) plus sub-branches (things with the same structure
as the branch). In a program, that structure will appear in the standard
recursive way, as a procedure calling itself as a subprocedure.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

82 Feedback, Growth, and Form

If we assume that the branching angle is 45°, then a first try at a
program might be

TO BRANCH LENGTH

draw the main branch
FORWARD LENGTH

turn to point along the left
secondary branch and draw it

LEFT 45

BRANCH LENGTH/2

now draw the right secondary branch
RIGHT 90

BRANCH LENGTH/2

But if we try this procedure, we'll find that it has a bug: The turtle starts
drawing a branch, then its left secondary branch, then that branch's
left secondary branch, and so on and so on. No right branches ever get
drawn. At some point, we must make the process stop generating new
left branches and come back to do the right branches. We'll accomplish
this by giving the BRANCH process a second input called LEVEL, which
counts down as the program moves from each branch to its secondary.
We can think of LEVEL as labeling the type (complexity) of the branch:
A level i branch is a tip (a branch with no secondaries); a level 2 branch
will sprout two level i secondaries; a level 3 branch will sprout level 2
secondaries, and so on. The program should stop generating secondary
branches whenever the level reaches 0:

TO BRANCH (LENGTH, LEVEL)

IF LEVEL = O THEN RETURN

FORWARD LENGTH

LEFT 45

BRANCH (LENGTH/2, LEVEL - 1)

RIGHT 90

BRANCH (LENGTH/2, LEVEL - 1)

Unfortunately, as shown in figure 2. 19a, there is still a bug in the pro-
gram. This bug, which is tricky to find, comes up often in such recur-
sive descriptions: We must ensure that after drawing the left secondary
branch the turtle returns to the base of that branch, or else the RIGHT 90

instruction will not align the turtle correctly for drawing the right secon-
dary branch. In other words, we must ensure that the process that draws
the left secondary branch restores the state of the turtle to what the

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Growth 83

Figure 2.19
The BRANCH procedure. (a) Version with state bug, LEVEL = 3. (b) Debugged version,
LEVEL = 3. (e) Debugged version, LEVEL = 6.

state was before the process began. The technical term for a process
that leaves the turtle in the same state in which it found it is state-
transparent.
BRANCH will work only if its sub-branches are state-transparent. But

since the sub-branches as programs are just copies of BRANCH itself,
BRANCH must be made state-transparent. (In a recursive society all you
must do to make sure your offspring have some property is have it
yourself.) Here is the debugged program:

TO BRANCH (LENGTH, LEVEL)

IF LEVEL = O THEN RETURN

FORWARD LENGTH

LEFT 45

BRANCH (LENGTH/2, LEVEL - 1)

RIGHT 90

BRANCH (LENGTH/2, LEVEL - 1)

turn and back up to make the
procedure state-transparent

LEFT 45

BACK LENGTH

Using this simple binary tree as a model, we can go on to construct
figures that look more like real trees. For example, we might add inputs
to the program to allow some other variation of the size of the secondary
branches besides "divide by 2." Another possibility is to make the length
of stem depend not on the level, but on whether the stem belongs to a
left or a right sub-branch.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

84 Feedback, Growth, and Form

\
\

,, \
\ /

NODE

\\\

NODE ")

LBRANCH RBRANCH

Figure 2.20
LBRANCH and RBRANCH have NODE in common.

The cleanest way to implement this idea is to have separate left and
right procedures that produce stems of different lengths. As the dashed
lines in figure 2.20 indicate, each of these must prepare for the next-level
branch. Though the preparation is not hard, it is more than half the
procedure, and both left and right branch procedures must do it. So

it makes sense to make it a subprocedure called NODE. We can also
make NODE responsible for the stop rule, which is common to the two
procedures.

TO LBRANCH (LENGTH, ANGLE, LEVEL)

draw a long stem
FORWARD (2 * LENGTH)

do next level
NODE (LENGTH, ANGLE, LEVEL)

make LERANCH state-transparent
BACK (2 * LENGTH)

TO RBRANCH (LENGTH, ANGLE, LEVEL)

draw a short stem
FORWARD LENGTH

do next level
NODE (LENGTH, ANGLE, LEVEL)

make RBRANCH state-transparent
BACK LENGTH

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Growth 85

1. [P} Figure 2.22 shows some animal horns. Can you find inputs to the
SPIRAL . GROWTH program that produce horns shaped like these?

ANGLE = 45 ANGLE = 20
LEVEL = 4 LEVEL = T

Figure 2.21
Branching figures drawn by LBRANCH.

TO NODE (LENGTH, ANGLE, LEVEL)

IF LEVEL = O THEN RETURN

point a'ong left branch and draw it
LEFT ANGLE

LBRANCH (LENGTH, ANGLE, LEVEL -1)

draw right branch
RIGHT (2 * ANGLE)

RBRANCH (LENGTH, ANGLE, LEVEL - 1)

make NODE state-transparent
LEFT ANGLE

You can start the process with either LBRANCH or RBRANCH. Figure 2.21
shows some of these trees. Notice that at first sight the growth pattern
looks random, even though it is actually very regular.

More information on the spiral shapes of shells, horns, claws, and teeth
can be found in On Growth and Form by D'Arcy Thompson (abridged
edition; Cambridge University Press, 1961). The branch procedure is
adapted from a model discussed in Patterns in Nature, by Peter S.
Stevens (Boston: Atlantic Monthly Press, 1974). Both of these books
are well worth having a look at if you are interested in mathematical
models in biology.

Exercises for Section 2.3

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 2.22
Examples of animal horns that can be modeled by SPIRAL. GROWTH.

[P] Invent variants of the SPIRAL . GROWTH procedure in which the
chambers are not quadrilaterals.

[P] Efficiency experts may object that our SPIRAL. GROWTH procedure
is inefficient in that the ratio of one chamber to the next should be
computed only once, rather than each time a new chamber is drawn.
But our version is easy to modify so that this ratio (and hence the shape
of the chambers) can be varied from one chamber to the next. We might
let the left and right sides grow more slowly (with a different ratio) than
the tops and bottoms, and so get a figure which becomes stubbier as it
grows. Experiment with possibilities like these. What kinds of shapes
arise if the change in growth is periodic (seasonal)? If the rate of growth
is random?

What is the total length of all the lines drawn by the BRANCH procedure
for a given length and level? [HAI

[P] Modify NODE so that the choice of whether the left or the right
sub-branch is to be the long one is made randomly at each level.

86 Feedback, Growth, and Form

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Recursive Designs 87

Make a branching model in which each left sub-branch is twice as
long as each right sub-branch and sprouts two left-right branches. What
is the total length of all the branches drawn for a given length and level?
[HA]

[P) Create some variations that introduce randomness into the model
given in the previous exercise. For instance, the left branch may sprout
either one or two branches at each level.

[D] Does EQSPI (2, 2, 2), EQSPI (1, 1, 1.), EQSPI (.5, .5, .5), ... approach
a limiting spiral the way POLY (n, n) does, as n goes to O? Explain why
or why not. How about EQSPI (n, n, n + 1)? How about EQSPI (n, n, k"2),
k constant? [A]

What parameters describe equiangular spirals the way radius or
curvature describes a circle? Relate these to the inputs of EQSPI. [HA]

lo. [D] Prove the assertion that any looping program which uses only
S.FORWARD, RIGHT, and GROW has an EQSPI skeleton, paralleling the
results of section 1.3. What are the angle and the growth factor for
the steps of the skeleton? [H)

2.4 Recursive Designs

The branching models of section 2.3 could be described as recursive
designs, because these figures contain subparts which are in some sense
equivalent to the entire figure (for example, a branch is made up of
branches). We've already run into two important considerations for
writing turtle procedures to generate such designs: We need to include
some kind of stop rule so that the process eventually stops generating
more and more subfigures, and we need to keep track of the state of the
turtle in designing the interface between part and subpart. In particular,
it helps to make each part state-transparent.

2.4.1 Nested Triangles

The nested triangle design shown in figure 2.23 illustrates these prin-
ciples. The central observation is that the figure consists of a triangle
plus a smaller copy of itself at each corner, just as the trees of the
last section were forks plus smaller copies of themselves on each prong.
Thus, we imagine the turtle drawing our figure as follows: At each of

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 2.23
Figure drawn by NESTED. TRIANGLE.

the vertices of the largest triangle, pause and construct a smaller figure
of half the size, in the corner. The smaller triangles should follow the
same rules, drawing a still smaller triangle at each of their corners, and
so on, and so on. Finally, we'll stop generating subtriangles when the
sides get very small. All together, the procedure is

TO NESTED.TRIANGLE SIZE

IF SIZE < lo THEN RETURN

REPEAT 3

NESTED. TRIANGLE SIZE/2

FORWARD SIZE

RIGHT 120

Notice that each NESTED. TRIANGLE (SIZE) will be state-transparent as
long as each NESTED. TRIANGLE (SIZE/2) drawn in its corners satisfies
that property. In turn, that state transparency depends on the state
transparency of smaller and smaller NESTED. TRIANGLEs until, when SIZE

is less than 10, the program stops, ensuring state transparency all the
way back up the line. A simple variation on this program draws smaller
figures outward from the corners:

TO CORNER.TRI SIZE

IF SIZE < 10 THEN RETURN

REPEAT 3

FORWARD SIZE

CORNER.TRI SIZE/2

RIGHT 120

88 Feedback, Growth, and Form

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Recursive Designs 89

Yet another way to interface a triangle to a recursive call to itself is to
stop halfway through a side and put the recursive call there:

TO OUTWARD.TRI SIZE

IF SIZE < 10 THEN RETURN

REPEAT 3

FORWARD SIZE/2

INSERT SIZE

FORWARD SIZE/2

RIGHT 120

TO INSERT SIZE

LEFT 120

OUTWARD.TRI SIZE/2

ensure state transparency of INSERT

RIGHT 120

These triangle procedures can be generalized to arbitrary POLY figures.
The only tricky part is to make sure we know how many sides to draw,
say, as a function of the POLY's angle. As we saw in chapter 1, this
can be done by accumulating total turning and stopping when the total
turning is a multiple of 360°:

TO CORNERPOLY (SIZE, ANGLE, TOTALTURN)

IF SIZE < 10 THEN RETURN

REPEAT

CORNERPOLYSTEP (SIZE, ANGLE)

TOTALTURN - TOTALTURN + ANGLE

UNTIL REMAINDER (TOTALTURN, 360) = O

TO CORNERPOLYSTEP (SIZE, ANGLE)

FORWARD SIZE

CORNERPOLY (SIZE/2, - ANGLE, 0)

using - ANGLE "symmetrizes" the figure
RIGHT ANGLE

The CORNERPOLY procedure is invoked with the third input, TOTALTURN,
equal to zero. Figure 2.24 shows some samples drawn by this program.

Although we've been using the side length as a stop rule for these
designs, you might prefer to stop at a particular level of recursion. For
example,

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

ANGLE = 90

ANGLE = 60

Figure 2.24

Shapes drawn by CORNERPOLY.

TO NESTEDTRIANGLE (SIZE, LEVEL)

IF LEVEL = 0 THEN RETURN

REPEAT 3

NESTEDTRIANGLE (SIZE/2, LEVEL - 1)

FORWARD SIZE

RIGHT 120

ANGLE = 120

ANGLE = 144

90 Feedback, Growth, and Form

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Recursive Designs 91

2.4.2 Snowflakes and Other Curves

In some instances the effect of state transparency can be achieved al-
though there is not true state transparency. In such cases, each pro-
cedure knows the state change of its subprocedures and hence knows
what to do to compensate (if necessary). If the state change of the sub-
procedure is simple there are few disadvantages to this method, and if
the state change is exactly what the main procedure needs to prepare
for a next step this method can be advantageous.

This strategy is illustrated by a program to draw the snowflake curve
shown in figure 2.25. Think of this curve as a triangle in which each side
is made up of four subsides, each subside is made up of four sub-subsides,
etc. Rather than making the procedure state-transparent, we'll design
each side to move the turtle forward a certain distance without changing
the heading:

TO SNOWFLAKE (SIZE, LEVEL)

REPEAT 3

SIDE (SIZE, LEVEL)

RIGHT 120

TO SIDE (SIZE, LEVEL)

IF LEVEL O THEN

FORWARD SIZE

RETURN

SIDE (SIZE/3, LEVEL - 1)

LEFT 60

SIDE (SIZE/3, LEVEL - 1)

RIGHT 120

SIDE (SIZE/3, LEVEL - 1)

LEFT 60

SIDE (SIZE/3, LEVEL - 1)

Until now the LEVEL = O process has been trivial, and has been state-
transparent by virtue of doing nothing at all. Here theLEVEL = O action
is crucial so that the LEVEL = i process gets the state change expected,
FORWARD (SIZE). In fact, in the snowflake procedure no FORWARD com-

mands will be issued except when LEVEL = 0.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

92 Feedback, Growth, and Form

Initial Final
state state

breaks
upas

RIGHT 120

,7A\

Start LEFT 60 LEFT 60 End

(b) (c)

Figure 2.25
The snowflake curve. (a) Recursive decomposition of a "side." (b) Snowflake,
LEVEL = 2. (c) Snowflake, LEVEL 4.

Another related curve is the "C curve" shown in figure 2.26a. A level
O C curve is just a line; a level n C curve consists of two level n - i C
curves at right angles to each other, followed by a 90° turn to restore
the heading:

TO C (SIZE, LEVEL)

IF LEVEL = O THEN

FORWARD SIZE

RETURN

C (SIZE, LEVEL - 1)

RIGHT 90

C (SIZE, LEVEL - 1)

LEFT 90

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Recursive Designs 93

Figure 2.26
(a) C curve, LEVEL = 10. (b) Dragon curve, LEVEL li.

The "dragon curve" shown in figure 2.26b is similar to the C curve;
however, there is only one 900 turn, and its direction changes from level
to level. We can think of it as generated by a pair of procedures LDRAGON
and RDRAGON specified as follows: A 'evel n LDRAGON is made up of a level
n - i LDRAGON and a level n - i RDRAGON with a left turn in between; a
level n RDRAGON is made up of a level n - i LDRAGON and a level n - i
RDRAGON with a right turn in between; a level O dragon is a line:

TO LDRAGON (SIZE, LEVEL)

IF LEVEL = O THEN

FORWARD SIZE

RETURN

LDRAGON (SIZE, LEVEL - 1)

LEFT 90

RDRAGON (SIZE, LEVEL - i)

TO RDRAGON (SIZE, LEVEL)

IF LEVEL = O THEN

FORWARD SIZE

RETURN

LDRAGON (SIZE, LEVEL - 1)

RIGHT 90

RDRAGON (SIZE, LEVEL - 1)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

94 Feedback, Growth, and Form

2.4.3 Space-Filling Designs

Suppose we write a program that draws something inside a square. For
the moment, we won't care what the program does, but we will insist
that the initial and final states of the turtle are related to the square
as shown in figure 2.27a. Consider a new square that consists of nine
smaller squares. We can use our simple program in each smaller square
to produce a more complicated program winding through the new square
(figure 2.27b). All we need is appropriate interfacing between subsquares.

This more complicated program relates to the new square in exactly
the same way that the simple program related to the first square, so we
can continue this process. In the end we will have a square, consisting of
nine smaller squares, each of which consists of still smaller squares, and
so on. The process is recursive, and can be implemented in the usual
way (by writing the higher-level procedure in terms of the lower-level
one). The interfaces between the various subfigures are shown in figure
2.27b. For a level O process, we can use the simplest possible way of
entering and leaving a square, as assumedFORWARD (SIZE). This gives
the following procedure:

TO FILL (SIZE, LEVEL)
IF LEVEL = O THEN

FORWARD SIZE

RETURN

side of small square is 1/3 side of large square
FILL (SIZE/3, LEVEL - 1)

interface to next subfigure is LEFT 90
LEFT 90
FILL (SIZE/3, LEVEL - 1)

next three subfigures have RIGHT 90 as interface
REPEAT 3

RIGHT 90

FILL (SIZE/3, LEVEL - 1)
next three have LEFT 90 as interface

REPEAT 3

LEFT 90
FILL (5IZE/3, LEVEL - 1)

final subfigure has RIGHT 90 interface
RIGHT 90
FILL (SIZE/3, LEVEL - 1)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Final state

Initial state Start

Recursive Designs 95

Stop

(a) (b)

(e) (d) (e)

Figure 2.27
The FILL procedure. (a) Initial and final states for traversing a squarç. (b) Traversing
the square, decomposed into traversing nine subsquares plus left-right interfacing.
(c-e) The pattern drawn by FILL at LEVEL = 1, 2, and 4.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

96 Feedback, Growth, and Form

This FILL procedure is an example of a space-filling design. If we
make LEVEL greater and greater, then the FILL curve winds through the
square in finer and finer subdivisions. For LEVEL very large, we could
imagine FILL as passing through every point of the square. FILL, as
written, draws a curve that intersects itself; however, it is possible to
separate the nine subsquares with small interfaces to avoid intersection.
(See exercise 5.) If done properly, this will not affect the space-filling
property of the design.

Perhaps the most famous space-filling design is the curve (shown in
figure 2.28) invented by the German mathematician David Hubert. As
indicated in figure 2.28e, we can think of the level n Hubert curve as
made up of four level n - i Hubert curves, joined by interfaces which
are straight line segments. Another way to picture this is to imagine the
square as divided into four subsquares. The Hilbert curve traverses the
square by visiting each of the subsquares and placing the interfaces in
between. (See figure 2.28d.)

In designing a program to draw the Hubert curve we must be careful
to keep track of how each level of the curve affects the state of the turtle.
Assume that the turtle begins facing along the edge of the square that
it traverses, and ends in the same direction. Then pasting together four
level n - i curves to form the level n curve requires interface turns as
shown in figure 2.28f. A second tricky point is that there are really two
different level n - i Hubert curvesone that traverses its square to the
left and one that traverses to the rightand that the level n curve is
made up of two of each parity. Finally, notice that the interfaces alone
provide the state change assumed at each level, so we can let the level
O curve be simply a point; then the interfaces in level i will provide the
state change assumed by higher levels. The complete program consists
of two procedures, LHILBERT and RHILBERT:

TO LHILBERT (SIZE, LEVEL)

IF LEVEL = O THEN RETURN

rotate and draw first subcurve
with opposite parity to big curve

LEFT 90

RHILBERT (SIZE, LEVEL - 1)

interface to and draw second subcurve
with same parity as big curve

FORWARD SIZE

RIGHT 90

LHILBERT (SIZE, LEVEL - 1)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Recursive Designs 91

(a)

(d)

?

(b) (e)

A

RIGHT
90

FORWARD

(e) (f)

t

FORWARD
LEFT

RIGHT 90

FORWARD

A

LEFT

Initiol stole

Figure 2.28
The Hubert curve. (a) LEVEL = 2 (b) LEVEL 3 (e) LEVEL = S (d) Turtle "traverses"
square by traversing each subsquare. (e) Decomposition of level n Hilbert curve into
four level n - i curves together with interfaces. (f) Details of interfacing.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

98 Feedback, Growth, and Form

third subcurve
FORWARD SIZE

LHILBERT (SIZE, LEVEL - 1)

fourth subcurve
RIGHT 90 FORWARD SIZE

RHILBERT (SIZE, LEVEL - 1)

a final turn is needed to make the turtle
end up facing outward from the large square

LEFT 90

The RHILBERT procedure is the same, but with all the turns reversed:

TO RHILBERT (SIZE, LEVEL)

IF LEVEL = O THEN RETURN

RIGHT 90

LHILBERT (SIZE, LEVEL - 1)

FORWARD SIZE

LEFT 90

RHILBERT (SIZE, LEVEL - 1)

FORWARD SIZE

RHILBERT (SIZE, LEVEL - 1)

LEFT 90

FORWARD SIZE

LHILBERT (SIZE, LEVEL - 1)

RIGHT 90

We can combine LHILBERT and RHILBERT into a single procedure by
providing a third input, equal to +1 or 1, whose sign is reversed to
convert left turns to right turns:

TO HILBERT (SIZE, LEVEL, PARITY)

IF LEVEL = O THEN RETURN

LEFT (PARITY * 90)

HILBERT (SIZE, LEVEL - 1, - PARITY)

FORWARD SIZE

RIGHT (PARITY * 90)

HILBERT (SIZE, LEVEL - 1, PARITY)

FORWARD SIZE

HILBERT (SIZE, LEVEL - 1, PARITY)

RIGHT (PARITY * 90)

FORWARD SIZE

HILBERT (SIZE, LEVEL - 1, - PARITY)

LEFT (PARITY * 90)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Recursive Designs 99

Exercises for Section 2.4

[P] Try the following variant of the nested-triangle procedure, which
adds only one smaller triangle at each level connecting the midpoints of
the larger triangle:

TO NEST (SIZE, LEVEL)

IF LEVEL = O THEN STOP

FORWARD SIZE/2

SUBNEST (SIZE, LEVEL)

FORWARD SIZE/2

RIGHT 120

FORWARD SIZE

RIGHT 120

FORWARD SIZE

RIGHT 120

TO SUBNEST (SIZE, LEVEL)

RIGHT 60

NEST (SIZE/2, LEVEL - 1)

LEFT 60

Generalize this procedure to produce designs based on nested POLYs.

[HA]

What is the length of the level n snowflake curve? How much area
does it enclose? [HA]

[P] Write a procedure that generalizes the (triangular) snowflake curve
to produce arbitrary "polysnowflakes."

[D] VThat is the length of the level n Hilbert curve? [HA]

[P] The FILL curve is not as elegant as it might be because it intersects
itself. Add interfaces, in the same way that HILBERT has them, to
separate the squares a bit. (See figure 2.29.) Note that the net effect of
the interfaces by themselves (including turning to set up for diagonals)
is the state change assumed for each level of FILL. This is the same as
with the interfaces to 1-JILBERT, and makes it possible to allow the level
O curve to be simply RETURN. Try this possibility for FILL as well.

[P] The Hilbert curve is constructed on the following model: (1) Walk
along the side of a square, and imagine filling the square. (2) Divide
the square into four subsquares. Construct a similar space-filling curve
based on dividing a triangle into four subtriangles.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

,,4,,.4
4

Figure 2.29
Interfaces to FILL and resulting (level 2) design.

[P] Construct a space-filling curve on the Hubert model, but based
on dividing a square into nine subsquares.

[PD] Write a procedure to draw the space-filling curve shown in figure
2.30. (This curve was invented by the Polish mathematician Wraclaw
Sierpinski.) [HA]

[P] Invent some new space-filling designs.

[P] Can you build a recursive design like FILL or HILBERT, but based
on entering the middle of the side of the square rather than the corner?

[P] How much does the FILL curve depend on the particular level
O step used? Does FILL change its character if you use some more
complicated level O step than FORWARD (SIZE)?

[P] Notice that in none of our recursive designs does the turtle
have any representation of the curve except the program itself. On
the other hand, by encoding turtle commands as letters, one can con-
struct an explicit representation in the following way: Let F stand for
FORWARD SIZE, L for LEFT 60, and R for RIGHT 120; then construct a
string representing the side of a snowflake curve with the rules

S0 = F,
S? = S_1LS_1RS1LS_1.

loo Feedback, Growth, and Form

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

LEVEL i

LEVEL = 4

Figure 2.30
The Sierpiriski curve

LEVEL = 2

Recursive Designs 101

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

102 Feedback, Growth, and Form

In fact a program to draw the side could be enacted as follows: Initialize
S - F; apply the recursive step S i- SLSRSLS (juxtaposition denotes
concatenation) n times; have the turtle interpret the resulting string.
Try this with several known recursive designs, such as HILBERT and
SNOWFLAKE. Now explore the possibilities of this "word generation"
method by varying level 0, the recursive step, and the interpretation of
letters. You may wish to add more variable symbols to the process,
for example, T i- SRSLSRS.

13. [PD] All our recursive designs have maintained the constraint that
turtle must not lift the pen. Thus, the recursive step in FILL consisted
of taking a certain walk through a square and then using that walk nine
times in sequence to make a more complex walk through a square. But
we could just as easily imagine taking any design whatsoever in a square
(not necessarily a walk through it) and gluing nine copies to make a
larger square (without making sure the designs hook up simply). (See
figure 2.31a.) Of course the overall design will appear more impressive
if some lines do "accidentally" hook up. This is like tiling a floor
with more and more complex tiles. Varying the design on the level
O tile together with the orientations for the tiles in the recursive step
makes a fascinating artistic and mathematical exploration. To aid the
exploration you may wish to implement the recursive gluing-together
steps as programs that can take arbitrary design-drawing programs,
including glued-together designs, as inputs. That way a level 3 recursive
tile will look like GLUE1 (GLUE2 (GLUE3 (SHAPE1))). Figure 2.31be shows
designs that can be made in this way. See if you can find the level O
design in each.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Design

(a)

(b)

(d)

GLUE I

pw,',wfl,

AU* iu. s.
de, 114tk i4t

ww

jy y

i

Á'IøÂ
(e)

sIwJI4aI!.4
l'r.» *ir.' i

(e)

Figure 2.31
(a) Recursive decomposition of tiling designs. (be) Four tiling designs.

Recursive Designs 103

Design

C

0
a

u6!s9a

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Vector Methods in Turtle Geometry

I am sorry that I had to torture you with these
elements of analytic geometry. The purpose of this
invention of Descartes' is nothing but to give names
to the points X in a plane by which we can distin-
guish and recognize them. This has to be done in a
systematic way because there are infinitely many of
them; and it is the more necessary as points, unlike
persons, are all completely alike, and hence we can
distinquish them only by attaching labels to them.

Hermann Weyl, Symmetry

In chapter 1 we emphasized how turtle geometry provides an alter-
native to Cartesian coordinates for exploring geometry with a com-
puter display screen. This chapter introduces a third way to represent
geometric phenomena: vector representation. Vectors methods are, in
many ways, intermediate between pure turtle methods and coordinate
methods. We will be making use of vectors as a mode of representing
geometric phenomena that is sufficiently intrinsic and local to capture
simply some essential features of turtle geometry but also shares the al-
gebraic nature that makes analytic geometry so generally useful. More
than that, the algebra of vectors is easily reduced to simple arithmetic
operations through the introduction of vector coordinates. Since they
link well with geometry on one side and with numerical calculation on the
other, vectors are an ideal representation to use in computer programs
dealing with geometry. Using this fact, we will show how to implement
turtle geometry from scratch on almost any computer graphics system,
how to extend turtle geometry into three dimensions, and (in later chap-
ters) how to design exotic turtles that walk on cubes, on spheres, and
even in Einstein's curved spacetime.

Despite this great power and the detailed work necessary to harness
it, we encourage you not to lose sight of the most important reason
for a combined look at turtles and vectors: Turtle geometry and vector
geometry are two different representations for geometric phenomena,
and whenever we have two different representations of the same thing
we can learn a great deal by comparing representations and translating
descriptions from one representation into the other. Shifting descriptions
back and forth between representations can often lead to insights that
are not inherent in either of the representations alone.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

106 Vector Methods

We will start this chapter by looking at some of the familiar turtle
phenomenaPOLYs, closed paths, and so onin terms of vectors. After
dealing with vectors as conceptual entities, we will reduce vectors to
coordinates and thus gain the ability to manipulate vectors on the com-
puter.

3.1 Vector Analysis of Turtle Programs

The turtle commands FORWARD, BACK, LEFT, and RIGHT describe changes
relative to the turtle's current state. For example, the pair of commands
RIGHT 90, FORWARD loo results in a motion of 100 steps from the turtle's
current position and at 900 from the current heading. This relativity is
exactly what allows turtle programs to be simple intrinsic descriptions
of shapes such as circles and POLYs. However, if you have a global frame
of reference in mind, and absolute orientation is important to you, the
two shapes in figure 3.la are very different; one is a square and one is
a diamond. The orientation of the sides with respect to a global "up"
allows one to discriminate between square and diamond, even though
intrinsically the two figures are identical. In this case, position is still
relative. One cannot transform "squareness" to "diamondness" simply
by changing the position of the figure without rotating it.

Motions that are absolute in direction but relative in positioncalled
displacementsare readily described by vectors. We can think of a
vector as an arrow of definite length and direction but arbitrary position,
pointing from beginning to end of the displacement. (Throughout the
book we denote vectors by boldface symbols such as y and w.) In order
to make a turtle produce squares and diamonds, imagine handing it
a collection of vectors. A program to draw a figure tells the turtle
when to make the displacement described by each vector. The following
procedures correspond to figure 3.lb and c.

TO SQUARE

DISPLACE.BY S
DISPLACE.BY S2

DISPLACE.BY S3

DISPLACE BY S4

TO DIAMOND

DISPLACE.BY D1

DISPLACE BY D2

DISPLACE.BY D3

DISPLACE.BY D4

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Vector Analysis of Turtle Programs 107

(a)

(e)

Figure 3.1
(a) Rotating a square produces a diamond. (b-c) Vector decompositions of square
and diamond.

S2

._
54

s

(b)

s'

s3

s4 S24
s3

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

108 Vector Methods

3.1.1 Vector Operations: Scalar Multiplication and Addition

There are a number of relations between vectors that can be useful
to a vector-following turtle. If the turtle knows how to walk along a
particular vector y, then it should be able to walk along a vector of
the same length pointing in exactly the opposite direction. Naturally
enough, we denote this displacement by -y. Similarly, a displacement
in the direction of y, butS times as far, can be denoted by 5Xv (or simply
5v). In general, av (where a is a number) is a vector in the direction of y,
but a times as long. (If a is negative, av is opposite in direction.) This
operation is called scalar multiplication of numbers and vectors. It is
essentially just changing the scale used to measure displacement. Scalar
division can be defined by the formula v/a = (1/a) X y.

Besides scalar multiplication (and the special case 1 X y = -y)
there is one other fundamental method of producing new vectors from
old ones. Observe that performing two displacements in sequence defines
a net displacement, a net change in position. A displacement y followed
by a displacement w yields a net displacement called the vector sum,
denoted y + w. Having defined addition of vectors, we can define vector
subtraction as adding the negative:

y - w = y + (w) (by definition).

Vector addition satisfies the commutative property

y + w = w + y

for any vectors y and w. This is illustrated in figure 3.2a, which shows
how following along y and then along w, or alternatively w and then y,
forms a parallelogram whose diagonal is the vector sum.

Figures 3. 2b and e illustrate two more simple but important formulas
that relate scalar multiplication to addition of vectors:

(a + b)v = av + by,
a(v + w) = av + aw.

The special vector O represents no displacement at all; its length is
zero. This zero vector is analogous to the number zero, and it has many
of the same properties:

V - V = O,
O + y =
O Xv = O.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Vector Analysis of Turtle Programs 109

Commutativity: y + w = w + y

v+w

2v

av + aw = a(v + w)

5v

2v 3v

av + by = (a + b)v

Figure 3.2
Properties of vector addition.

3.1.2 Vector Representations of Closed Paths

Now we'll take advantage of vectors to rephrase some of our analyses of
familiar turtle-geometric programs and look at some new phenomena.
We will be using the following fundamental correspondence between vec-
tors and turtle programs: Each FORWARD step by the turtle is a displace-
ment and can be described by a vector; successive displacements can
be described by vector addition. Notice that the RIGHT and LEFT com-
mands are not directly represented by vectors; rather, they determine
the direction of the vectors generated by FORWARD commands.

Suppose the turtle makes its first move according to some initial vector
y0. If the second move is along y1, then the net displacement is just
vo + y1. The turtle's net displacement after n steps, as shown in figure
3.3, will be

VO + Vl+ ... + Vfl_1.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

110 Vector Methods
V3

Figure 3.3
Turtle's displacement as a sum of vectors.

If the path is closed in these n steps the turtle must have returned to
its starting point, and thus the net displacement from the initial position
must be zero:

vo + vi + . + vn_i = O.

So if we ignore the question of whether or not the turtle's final heading
is the same as its initial heading, then we can say the turtle's path is
closed precisely when the vectors that represent the position changes
add up to zero.

3.1.3 POLY Revisited: Rotations and Linearity

Let's look carefully at a simple special case: POLY, our archetypal looping
program from chapter 1. We'll give a new interpretation of the POLY
closing theorem of subsection 1.2.2. To keep things simple let the ANGLE
of the POLY be 360/n, where n is a positive integer. The POLY closing
theorem says closure will be achieved in n steps. Reinterpreting the
closure in terms of vectors, we see that proving the theorem boils down
to verifying the equation

vo + vi + ... + vn_i = O.

In order to do this we need some way of capturing in vector terms the
simple relationship among the vs: They are all just y0 rotated by various
multiples of the POLY angle. To express this relation we define, for any
vector y and angle A, a new vector Rotate(v, A), also written RA(V),
to be the vector obtained by rotating y through A. Using this rotation
operation allows us to express the special property of the POLY segments:

= RkA(vo) (A = 360/n).

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Vector Analysis of Turtle Programs 111

R4(3v)

7<
V

3v

RA(av) = aRA(v)

V

RA(V + w) = RA(v) + RA(w)

Figure 3.4
Linearity of the rotation operation.

Now we can restate the POLY closing theorem as follows:

POLY Closing Theorem (Veetor Form) Given any vector y0 and positive
integer n, let A = 360/n and let Vk = RkA(vo). Then

vo + vi+ .. . + vn_1= 0.

The proof of this theorem will be based on two fundamental properties
of the rotation operation RA for any angle A. As figure 3.4a illustrates,
the rotation of any scalar multiple of a vector y can be obtained simply
by scaling RA(v):

RA(av) = aRA(v).

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

112 Vector Methods

This is called the scaling property of rotation. Rotation has another
property called additivity, which means that for any vectors y and w.

RA(V + w) = RA(V) + RA(w).

Figure 3.4b demonstrates that rotation satisfies additivity; just rotate
the whole picture for vector addition and note that each of the parts y
and w and the sum v+w get rotated while preserving their configuration
as a sum. If an operation has both the scaling and additivity properties,
then it is said to be linear. Linearity will soon take its place beside local
vs. global and intrinsic vs. extrinsic as one of the recurring mathematical
themes of this book.

Returning to the POLY theorem, we wish to demonstrate that the sum

V=vo+.+ vn-'
satisfies V = O. The insight that proves this is that the collection of vs
that make up V is perfectly symmetrical. The sum of them could hardly
point in any direction favoring one y over another, and so must point in
no direction at all: V = O.

To turn this observation into a proof, let us rotate V through angle A
and use linearity:

RA(V) = RA(VO+V1 + +v_i)
= RA(vo) + RA(v1) +... + RA(v1).

But RA(vo) = y1 (by the definition of Vk), and in general each Vk is
transformed into k±1 all the way until v_,, which gets transformed
into y0 (since rtA = 360). Therefore,

RA(V)=Vl +V2+ +Vn_l +VO V.

Note that the last equality follows from commutativity of vector addition
(the fact that order doesn't matter in a sum).

Having demonstrated that V doesn't change when rotated by A, we
complete the proof by observing that the only vector that can remain
unchanged by a rotation is the zero vector. (This statement is geometri-
cally obvious, although later on we'll develop the machinery to prove
this using algebra rather than geometry; see exercise 2 of section 3.2.)
In summary,

RA(V) = V implies that V = O,

and this completes the proof of the theorem.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Vector Analysis of Turtle Programs 113

Figure 3.5
The POLY equation y0 + V1 + + Vk c + RkA(ro).

We began this chapter by introducing vectors as a more global method
of describing turtle paths. We can capitalize on that perspective by
phrasing a global description of POLY in terms of vectors. The description
we have in mind specifies that the vertices of POLY lie on a fixed circle
where the angular measure of the arc between vertices is exactly the
angle input to the POLY (see chapter 1, section 1.2, exercise 15). This
fact means that, instead of following along POLY segments to reach a
particular vertex, we can obtain the same displacement by walking first
to the center of the circle and then along a radius. This gives

VO + Vi+ ...+ =
where e is a constant vector pointing to the center of the circle, and the
various rk are all radii pointing to the POLY's vertices and hence equal
in length. Using the correlation between the amount of arc between
vertices on the circle and POLY angle, A, we can rewrite this as

V0 + V1 + ... + V = e + RkA(ro).

Figure 3.5 shows this equation geometrically. In the next subsection
we'll see how to use this formula to good advantage.

If we let k become a continuous parameter, then c+RkA(ro) represents
all the points along the circle in which POLY is inscribed. We now
have three complementary descriptions of a circleturtle (FORWARD 1,

LEFT 1, etc.), Cartesian (z2 + y2 = r2), and vector (e + RkA(FO)).

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

V2

U2f \ui

VI

The procedure for drawing vectors takes two inputs specifying direction
and length of the vector to be drawn:

114 Vector Methods

Vo Vo Uo

Figure 3.6
Interleaving segments of two POLYs.

3.1.4 MULTIPOLYs: Another Application of Vector Analysis

Let's turn now from the familiar POLY to apply vector techniques to
some new programs. Our aim will not be to supply complete analyses,
but rather to sketch some partial results and suggest further problems
for you to tackle on your own.

Our first example is an elaboratiofi of POLY called DUOPOLY. It Is
constructed by taking two ordinary POLYs and interleaving them as
shown in figure 3.6. This is the natural way of doing two POLY8 at
the same time if one views POLY as a sequence of vectors rather than
as a sequence of turtle commands. (See NEWPOLY in subsection 1.1.4 for
comparison.) The DUOPOLY procedure takes four inputs, specifying the
sidelengths and the angles of the individual POLYs. The interleaving is
accomplished by alternately drawing sides of the two POLY figures POLY1
and POLY2, while making sure that the sides of the two POLYs have the
same headings they would have if the POLYs were drawn individually.
That is to say, if the first POLY's angle is ANGLE1 the headings of the
sides will be the successive multiples of ANGLE1, while for the second
POLY the headings will be the successive multiples of ANGLE2. Here is
the procedure:

TO DUOPOLY (SIDE1, ANGLE1, SIDE2, ANGLE2)

Cl-O
REPEAT FOREVER

VECTOR (C * ANGLE1, SIDE1)

VECTOR (C * ANGLE2, SIDE2)

CC+ i

V2

V3 VI

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Vector Analysis of Turtle Programs 115

TO VECTOR (DIRECTION, LENGTH)

SETHEADING DIRECTION

FORWARD LENGTH

(To make the headings of our turtle vectors agree with standard math-
ematical conventions for directions, we specify that a heading of O is
horizontal facing right, and that headings increase counterclockwise.)

One of the nice things about DUOPOLY is the great variety of figures
that can be obtained by varying the four inputs. Figure 3.7 gives a small
sample.

Closure
The first thing to notice about these figures is that they are all closed.
By using vector methods, it is easy to see why this is true. Think of the
DUOPOLY as a sum of vectors, and separate the vectors into two groups
corresponding to the sides of POLY1 (y) and POLY2 (u). Then the net
displacement is

VO + UO + U1+ .. + V/c + Uk
+ V1+ .. Vk) + (U + Ui+ ... + U/c).

The first group is just the net displacement of POLY1, and the second
that of POLY2. Whenever each POLY closes, the corresponding part (vs
or us) of the DUOPOLY net displacement will sum to zero. The trick is to
show that there is some point where the two POLYs close simultaneously.

Suppose that POLY1 closes in n1 stepswe saw in subsection 1.4.1
how to determine n1 as the least common multiple of ANGLE1 and 360 ±
ANGLE 1. Whenever C (the "ioop counter" in the DUOPOLY program) is
a multiple of n1, the vectors in the first group can be reassembled to
form some number of complete copies of POLY1 and hence will sum to
zero. Similarly, whenever C is a multiple of n2 (the number of vertices
in POLY2), the vectors in the second group will sum to zero. So if C is
a common multiple of n1 and n2, both groups will sum to zero at the
same time. In particular, taking C to be n1 X n2, or (better yet) the least
common multiple of n1 and n2, will produce a closed figure (see exercise
7 below). For example, figure 3.Ta is a DUOPOLY with ANGLE1 = 90°
(ni = 4) and an ANGLE2 of 320° (n2 = 9). It closes in LCM(4, 9) =
36 steps. You can easily see nine complete squares, and the remaining
segments can be reassembled to form four 9-gons.

In summary DUOPOLY closes because vector addition is commutative.
That allows us to reassociate an alternate sum of vectors from two POLY5

into two pieces, each of which represents a POLY and hence sums to zero.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

DUOPOLY (150, 90, 150, 320)

DUOPOLY (40, 10, 40, -15)

DUOPOLY (200, 62, 200, 300)

Figure 3.7
Some examples of DUOPOLY.

DUOPOLY (200, 90, 200, 300)

DUOPOLY (4, 2, 8, -2)

DUOPOLY (60, 19, 60, -20)

116 Vector Methods

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

c-2

Vector Analysis of Turtle Programs 117
kr0

krl

A = 20, B = 30 k continuous; B = 4A

Figure 3.8
Spirographs.

Symmetry
The global vector view of POLY, discussed at the end of subsection 3.1.3,
furnishes additional insight by allowing us to write a global equation for
the net displacement in DUOPOLY. (The equation is particularly simple if
we consider only those displacements formed by an equal number of vs
and us, that is, the displacement at every other vertex of the DUOPOLY
figure.) If we use A and B as the angles of the two POLYs, we have

VO + Vi + ... + Vk C + RkA(rV),

U0 + U1 + + Uk C + RkB(rU)

where c and Cu are the centers of the two POLY circles, and r and r
are the initial radii. Thus, the vertices of the DUOPOLY are given by

CV + Rj(r.) + Cu + Rkn(r) = C + Rj(r,) + Rkn(r).

The vector c = C + C represents the constant "center" of the
DUOPOLY. Remember from 3.1.1 how making k a continuous parameter
described the whole circle circumscribing POLY? We can do the same
here. Geometrically,

c + RkA(r) + Rkp(r)

represents a "two-armed spirograph" figure formed by rotating one vec-
tor about the end of another rotating vector. As k increments by 1,
RkA(r) rotates by A and RkB(r) rotates by B (figure 3.8a). Figure
3.8b shows a typical continuous spirograph figure (with no radii). We
have shown that every DUOPULY is inscribed in a two-armed spirograph.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

118 Vector Methods

Let's determine the symmetry of the spirograph. Imagine watching
the figure being generated, starting from a time when the two arms
are lined up. As soon as the two arms line up again, the figure will
have completed one "loop-the-loop" and will be about to make another
identical one, offset at some angle from the original. If B denotes the
larger of the two angles, then the arms become realigned when the B
arm has gone a full 3600 plus some to catch back up to the slower A
arm. The new loop-the-loop will be rotated by the amount the A arm
turned between lineups; hence, that is the symmetry angle, S, of the
spirograph. In equations this is expressed as follows:

kB = 360 + kA,

360k BA'
S kA

360A 360

BA B/Ai
For example, a DUOPOLY with ANGLE1 equal to 45 and ANGLE2 equal

to 9 has symmetry angle

s = 90,

so we should expect fourfold symmetry, and this is what we observe in
figure 3.9a. The symmetry angle depends only on the ratio of B to A. All
DUOPOLY5 with proportional angles are inscribed in similar spirographs.

Fortunately (since we're looking for good problems rather than easy
answers), the full story of DUOPOLY's symmetry is more complicated than
this one formula. Remember, the formula gives the symmetry of the
associated spirograph figure; the symmetry of the actual DUOPOLY figure
may be different. Figure 3.9b shows DUOPOLY with A = 4 and B = 32.
Then B/A = 8, which implies S = 360/7. Indeed, the figure appears
to have sevenfold symmetry. But this symmetry is not exact; the seven
lobes are not identical. We call this curious phenomenon "approximate
symmetry." We'll leave it to you to work out the conditions under which
approximate symmetry can occur and find a way to compute the exact
symmetry of a DUOPOLY figure rather than that of the spirograph (see
exercise 5 below).

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Vector Analysis of Turtle Programs 119

Figure 3.9
DUOPOLY (100, 45, 40, 9) with fourfold spirograph symmetry.
DUOPOLY (35, 32, 20, 4) with sevenfold spirograph symmetry.

Beyond DUOPOLY
The DUOPOLY procedure can be generalized to MULTIPOLY, which can
interleave any number of POLY5. The input to MULTIPOLY is a list of
[SIDE ANGLE] pairs. The number of pairs in the list is the number of
POLY5 to interleave. For example,

MULTIPOLY [[loo 90] [50 60] [20 30] J

interleaves three POLYs.

The MULTIPOLY procedure first draws a side of the first POLY in the
list, then a side of the second POLY, and so on until the list is exhausted.
Then it starts again at the beginning of the list, and this process is
repeated over and over:

TO MULTIPOLY INPUT.LIST

Cl-O
REPEAT FOREVER

REPEAT FOR [SIDE ANGLE] IN INPUT.LIST

VECTOR (C * ANGLE, SIDE)

CC + 1

(See appendix A for explanations of the REPEAT FOR ... IN ... con-

struct and the "structure-directed assignment" feature that is used to
set both variables SIDE and ANGLE at once.)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

120

ANGLEs: 1, 8, 16, 2

ANGLEs: 20, 30,40, 50

Figure 3.10
Examples of equal-sided QUADRAPOLYs.

There are many different kinds of MULTIPOLYs. Figure 3.10 illustrates
some QUADRAPOLYs (MULTIPOLY5 with the number of POLYs equal to 4).
Notice that figure 3.lOa has exact symmetry, while c and d are only ap-
proximately symmetric. QUADRAPOLYs are a rich domain of phenomena
in which to challenge your imagination at systematic investigation.

3.1. Unexpectedly Closed Figures

Unexpectedly closed figures, introduced in subsection 1.3.2, are figures
drawn by looping programs in which the basic loop is itself closedthat
is, figures whose POLY skeletons have zero sidelength. In terms of vectors
this means that the vectors in the basic loop "unexpectedly" sum to zero.

ANGLEs: 2, 3, 5, 7

ANGLEs: 7, 8,9, 10

Vector Methods

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Vector Analysis of Turtle Programs 121

Spirolaterals
When we introduced spirolaterals in subsection 1.3.2 we mentioned that
the figures we called generalized spirolaterals could be unexpectedly
closed. These figures are drawn, you recall, by the GSPIRO program:

TO GSPIRO (SIDE, ANGLE, MAX, LIST)

REPEAT FOREVER

SUBGSPIRO (SIDE, ANGLE, MAX, LIST)

TO SUBGSPIRO (SIDE, ANGLE, MAX, LIST)

COUNT - 1

REPEAT

FORWARD SIDE * COUNT

IF MEMBER (COUNT, LIST)

THEN RIGHT ANGLE

ELSE LEFT ANGLE

COUNT COUNT + 1

UNTIL COUNT > MAX

The inputs to the program specify the sidelength of the initial side, the
angle that the turtle turns at each vertex, the number of sides in the
basic loop, and the steps at which the turtle turns RIGHT instead of LEFT.

As an example of an unexpectedly closed spirolateral, we'll take an
ANGLE of 360/3 = 120, a MAX of 11, and a LIST of [3 4 6 7]. To
see why the corresponding GSPIRO (figure 3.11) is unexpectedly closed,
notice first that any vector in the basic loop must be a multiple of either
y0, y1, or y2, that is, the initial vector y0 rotated counterclockwise 00,

120°, or 240°, respectively. Now we compute what these multiples are.
The turtle starts out pointing along y0 and goes forward distance 1. (We
suppose, for simplicity, that SIDE is 1.) Now the turtle turns left to point
along y1 and goes forward 2; that is, it, moves by the vector 2v1. The
next move adds in 3v2. Now comes a right turn (since 3 is in the LIST),
and so the next move adds in 4v1. Continuing in this way, we find that
the sum of the vectors in the basic loop is

Oo+2v1+3v2+4v1+5v0+6v1+Tvo+8v2+9v0+lOvi+11v2
= 22(vo+vi+v2).

But we know from the vector form of the POLY closing theorem (see
subsection 3.1.3) that y0 + y1 + y2 = O. Therefore, the sum of the
vectors in the basic loop is zero and the figure is unexpectedly closed.

Generalizing this analysis, we see that we'll get unexpectedly closed
spirolaterals with an ANGLE of A = 360/n whenever we can arrange

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 3.11
GSPIRO with ANGLE = 120, MAX = 11, LIST E3 4 6 7] is unexpectedly closed.

things so that the sum of the vectors in the basic ioop is a multiple of
vo + vi +.. + So, given A 360%n and MAX, we can attempt
to find values of LIST that satisfy this property by the following "slot
process": Start by setting up ri. "slots" (corresponding to the vectors vk).
Now take the numbers from i through MAX (corresponding to the amount
the turtle goes forward at each step) and distribute these among the n

slots so that the sum of the numbers in each slot is the same (that is,
so that in the end all the '1k will be weighted the same amount). There
is one more restriction on assigning the numbers: If the number i goes
into slot k, then i + i must go into either slot k - i or k + i (mod n);

That is, the turtle can only rotate through the fixed ANGLE, left or right,
between successive steps). We'll use the term "regular unexpectedly
closed spirolateral" to refer to the kind of spirolateral produced by this
slot process, the kind for which the basic loop vector sum is a multiple
of vo + vi + + v4. But there are also irregular unexpectedly
closed spirolaterals. One example is drawn by ANGLE = 90, MAX = 8,

and LIST = [4]. The vector sum for this basic ioop is

8v0+lOvi+8v2+10v3,

which equals zero, since, for A = 360/4, vo = y2 and y1 = y3.
As it turns out, if A = 360/n where n is a prime number (n

2), all unexpectedly closed spirolaterals are regular, whereas if A =
360/n where n is an even integer no unexpectedly closed spirolaterals
are regular (see exercises 17 and 19 below).

122 Vector Methods

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

GOSPEL (300, 40)

Figure 3.12
Looping and initial tail of GOSPEL figures.

GOSPEL
Our final example for vector analysis is a very simple program, but the
analysis of whether or not the program draws a closed figure turns out
to be surprisingly difficult. The program is GOSPEL, named after the two
people who first studied it, Bill Gosper and Richard Schroeppel:

TO GOSPEL (SIDE, ANGLE)

LEFT ANGLE

FORWARD SIDE

GOSPEL (SIDE, 2 * ANGLE)

For an example, suppose that ANGLE is 40 (see figure 3.12a). Then the
sequence of turns in the resulting GOSPEL figure will be

40, 80, 160, 320, 640, 1280, 2560, 5120,

or, reducing modulo 360,

40, 80, 160, 320, 280, 200,40, 80,...

GOSPEL (300, 10)

Vector Analysis of Turtle Programs 123

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

124 Vector Methods

So GOSPEL with an ANGLE of 40 is equivalent to the fixed instruction ioop

LEFT 40 FORWARD SIDE

LEFT 80 FORWARD SIDE
LEFT 160 FORWARD SIDE

LEFT 320 FORWARD SIDE

LEFT 280 FORWARD SIDE

LEFT 200 FORWARD SIDE

repeated over and over.
But GOSPEL is not always precisely equivalent to a fixed instruction

loop. For instance, if we had taken the initial ANGLE to be 10 the sequence
of turns (reduced modulo 360) would be

10, 20, 40,80, 160, 320, 280, 200,40, 80,...,

or the same loop as before with an extra

LEFT 10 FORWARD SIDE

LEFT 20 FORWARD SIDE

added on at the beginning. This is illustrated in figure 3.12b.
In general, the sequence of angles turned is

ANGLE,2 X ANGLE,4 X ANGLE,8 X ANGLE,...,

and this will start repeating over from the beginning if and only if there
is some integer n for which

2 X ANGLE = ANGLE (mod 360).

If ANGLE = 360 X p/q where p and q are integers with no common
factors, the above equation reduces (see exercise 24) to 2 X p = p
(mod q). This equation can always be satisfied if q is an odd number,
because if q is odd there is always some n for which 2 = 1 (mod q)
(see exercise 25). The smallest positive integer n that satisfies 2' = i
(mod q) is called the order of 2 modulo q. Thus,

if ANGLE = 360 X p/q where q is odd, then GOSPEL is equivalent to a
fixed instruction loop. The number of steps in the basic loop is equal to
the order of 2 modulo q.

One interesting fact about GOSPEL is that the heading change for this
basic ioop is always a multiple of 360° (see exercise 26). Therefore,
whenever the figure is closed, it is automatically unexpectedly closed.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Vector Analysis of Turtle Programs 125

For a vector analysis of the basic ioop, suppose that ANGLE = 360 X
p/q, let n be the order of 2 modulo q, and let k denote the vector
y0 rotated counterclockwise through (ANGLE X k), where y0 points in
the turtle's initial direction. Now compute the position of the turtle at
the end of the basic loop in terms of the vectors Vk. First the turtle
turns through ANGLE and goes forward along the displacement y1. (We'll
suppose that SIDE = 1). Then the turtle turns 2 X ANGLE, which makes
the heading ANGLE + 2 X ANGLE = 3 X ANGLE, and goes forward. So
the resulting position is y1 +v3. Now the turtle turns 4 X ANGLE, which
makes the heading 7 X ANGLE, and goes forward to position y1 +v3 +v7.
Continuing for the n steps of the basic ioop, we see that the final position
is

l + V3 + '7 +" + Vr_i,
and the loop closes if and only if this sum is zero. (Note that by the
choice of n the last term in the sum above is equal to vo.)

In our example above, we had ANGLE = 40, = 360/9. The powers of
2 modulo 9 are 2, 4,8,7,5, 1, so the order of 2 modulo 9 is 6, the basic
loop has 6 segments, and the vector sum is

V1

We leave it to you (exercise 27) to verify that this sum is zero and that
hence the figure is closed.

Exercises for Section 3.1

Give geometric interpretations of vectors (displacements) in three
dimensions. Draw pictures to illustrate vector addition and scalar mul-
tiplication.

Give a geometric definition, in terms of displacements, of vector
subtraction. Give one that does not involve "adding the negative." [AJ

[DJ Using vectors, prove that POLYSPI (subsection 1.1.4) cannot close.
[HA]

State the vector form of the POLY closing theorem in the case where
A = 360 X p/q, and p/q is a fraction reduced to lowest terms. [A]

We saw in subsection 3.1.4 how to compute the symmetry of the
spirograph associated with a given DUOPOLY. Now find the exact sym-
metry. In particular, show that DUOPOLY starts looping (in the sense

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

128 Vector Methods

defined in section 1.3) when

C x (ANGLE1 - ANGLE2) = O (mod 360)

where C is the loop counter, and that the symmetry angle will be C X
ANGLE1 where C is the smallest positive integer that satisfies the above
equation. [H]

6. Predict the symmetry of DIJOPOLYs with ANGLE1 = 17, ANGLE2 = 1;

with ANGLE1 = 18, ANGLE2 = 2; with ANGLE1 = 28, ANGLE2 = 3; with
ANGLE1 = 101, ANGLE2 = 1; with ANGLE1 = 102, ANGLE2 = 2. Check
your answers by drawing the figures. [A]

T. [P] In our analysis of DUOPOLY we saw that if POLY1 closes in ni
steps and POLY2 closes in n2 steps then the DUOPOLY will close when the
loop counter C is a common multiple of n1 and n2. But can DUOPOLY

close for other values of C? In particular, is there a value of C smaller
than LCM(ni, n2) for which the DUOPOLY will generally be closed? What
about special circumstances?

[P] Compare the patterns drawn by DUOPOLY (Si, Al, S2, A2)

with those in which the second POLY is drawn by VECTOR (-A2, S2)

rather than VECTOR (A2, S2). How about VECTOR (A2, -S2)? What
about UADRAPOLYs where the sign of the angle input to VECTOR alter-
nates? What if the sign of the distance alternates (is positive for the first
and third POLY5, negative for the second and fourth)? Can you make
any generalizations? (Pay attention to symmetry!)

Generalizing our analysis of DUOPOLY, show that every nth vertex
of an n-fold MULTIPOLY lies on an n-armed spirograph figure. Can you
compute the symmetry of the spirograph? [A]

[D] Suppose we have a MULTIPOLY whose sequence of angles is
1, n, n2, n3.....Prove that the MULTIPOLY has (n + 1)-fold ap-
proximate symmetry. Show that 1, n, n2, n3,... produces (n - 1)-fold
symmetry. In what sense does an ordinary clock mechanism have 11-fold
symmetry? [A]

[D] Generalize the exact symmetry rule for DIJOPOLY5 (exercise 5
above) to a corresponding rule for MULTIPOLY5.

Find MIJLTIPOLYs with 3-, 4-, 5-, and 7-fold approximate symmetry.

[D] All of our symmetry considerations have been about rotational
symmetry. There is another kind of symmetry, called bilateral sym-
metry. Bilaterally symmetric figures have a symmetry reflection through

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Vector Analysis of Turtle Programs 127

an axis. (Figures 3.Ta, b, and d are clearly bilaterally symmetric. Are
3.7c, e, and f?) When is DUOPOLY exactly bilaterally symmetric? Approx-
imately bilaterally symmetric? What is the axis of symmetry? (It's not
always the initial heading!) [HA]

[P] Write and explore a DUOPOLY (or MULTIPOLY) program that adds
the vectors from one iteration of the REPEAT loop and then just moves
according to that sum vector. This can be accomplished by inserting at
the beginning of the loop a step called STARTVECTOR, which puts the pen
up and remembers the turtle's current position, and a step at the end
of the loop called ENDVECTOR, which notes the final position and then
draws the line from initial position to final. Study properties of figures
drawn by this program.

[P] Study the behavior of parametrized classes of MTJLTIPOLYs.
For example, what happens to DUOPOLY (k X Al, Si, k X A2, S2) or
DUOPOLY (Al, kXS, A2, (1k)XS) 0rDUOPOLY (kXAl, kxSl,
k X A2, k X S2) as k varies? Pay particular attention to critical values
of k such as positive or negative k near zero, k = 1, k large, etc. Invent
your own parametrized classes with interesting behavior.

[P] A "multi-looping program" is one that interleaves (in the sense of
MULTIPOLY) any number of looping programs. (Looping programs were
discussed in section 1.3.) Try to formulate a general theorem that tells
how to find the symmetry of any multi-looping program.

There is a partial converse to the vector form of the POLY closing
theorem of subsection 3.1.4: Suppose that ANGLE = 360/n. As before, we
define vectors vk to be the initial vector y0 rotated through (k X ANGLE)
and set

V=vo+vi+..+v_i.
We know that V = O. The converse result (which we do not prove) says
that if n is a prime number, then any collection of the vk that sums to
zero must do so by being a multiple of V. (Give an example to show
that this is false for nonprime n.) Using this converse to the theorem,
prove that any unexpectedly closed spirolateral with ANGLE = 360/n (n
prime) must be regular. [A]

Show that if there is a regular unexpectedly closed spirolateral with
ANGLE 360/n, then n divides MAX X (MAX + 1)/2. [HA]

[D] Show that if n is even there are no regular unexpectedly closed
spirolaterals with ANGLE = 360/n. [HA]

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

128 Vector Methods

For n an odd integer, show that we get a regular unexpectedly
closed spirolateral by taking ANGLE = 360/n, MAX = n2, and LIST =

[n 2n 3n ... n2].

With ANGLE = 360/n, n odd, show that we get another regular
unexpectedly closed spirolateral by taking MAX = n2 - i and LIST =

[n-1 2n-1 3n-1 ... n2-1].
[P] Write a computer program to do a "brute force" search for

unexpectedly closed spirolaterals. Given values for ANGLE and MAX, the
program should test all possible values for LIST and record which ones
give basic ioops that are closed. Can you think of ways to increase the
efficiency of this program?

[P] Write a program that uses the slot method to search for regular
unexpectedly closed spirolaterals. Can you make this search any more
efficient than the "brute force" search of the previous exercise?

Show that, for ANGLE = 360 X p/q where p and q have no common
factors, 2/c X ANGLE = ANGLE (mod 360) if and only if 2p = p (mod q).
[A]

Prove that if q is odd there is an integer k for which 2c 1 (mod q).
[H]

Prove that the heading change for the basic loop in the GOSPEL

program with A 360 X p/q (q odd) must be a multiple of 360. [H]

Verify that if A = 360/9 and vk = RkA(vo), then

V1 +V3 +VT +v6 +v4 +vo = o. [H]

Show that if p is a prime (p 2) the order of 2 modulo p is at most
p - 1. Use this to prove that if ANGLE = 360/p the resulting GOSPEL

figure is never closed. [HA]

[D] Let p be a prime, n an integer > 1, and ANGLE = 360/pa.
Show that the resulting GOSPEL figure is closed whenever the following
condition is satisfied: For every positive integer r, 2r + p is congruent
modulo pfl to a power of 2.

[DDP] Schroeppel claims that a complete solution to the GOSPEL

problem is that the figure will be closed for ANGLE = 360 X p/q where
p/q is a fraction reduced to lowest terms if and only if, for every prime s
dividing q, s2 also divides q; and none of the primes dividing q have the

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Coordinates for Vectors 129

e1 J
5e1

Figure 3.13
Any vector can be decomposed as y = ae1 + be2.

"exceptional property" that 23_1 = i (mod 2). Can you prove or
disprove this claim? Write a computer program to find some "exceptional
primes."

31. [DP} Consider variations on GOSPEL; for example, where ANGLE is

multiplied by 3 each time or by an arbitrary fixed amount each time.
How does this change the analysis of the program?

3.2 Coordinates for Vectors

So far we have dealt. with the vectors as arrows having fixed direction
and length. Sooner or later, however, we will want to manipulate vectors
using the computer. This means we will have to represent vectors in
terms of numbers and ordinary arithmetic operations.

Perhaps the most straightforward approach is to represent each vector
by the pair of numbers giving direction and length. We have already used
this method in the VECTOR command, which wab part of the DUOPOLY and
MULTIPOLY programs. But the calculation needed if we are to add vectors
and express the result in the same format is difficult, and translating
from vectors to numbers in this way is not much help.

Fortunately there is a better way. We saw in subsection 3.1.1 that
vector addition and scalar multiplication allow us to construct new
vectors from old ones. But you may not have noticed at that time that, if
we start with any two vectors that are not scalar multiples of each other,
every vector can be expressed as a sum of scalar multiples of these two.
Figure 3.13 shows a general vector expressed in this way. So if we use

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

130 Vector Methods

a pair of reference vectors, say e1 and e2, we can decompose any vector
y as a sum y = ae1 + be2 for some appropriate numbers a and b. The
reference pair e1, e2 is called a basis, and the parts of the decomposition
ae1 and be2 are called the components of y. The numbers a and b are
called the coordinates of y. (Sometimes a and b are themselves referred
to as components.) We can create a correspondence between vectors and
pairs of numbers as follows:

y corresponds to the pair (a, b) precisely when y = ae1 + be2.

It is important that this correspondence is one-to-one. That is, if y
corresponds to (a, b) and w corresponds to (c, d) and if y w, then
we are justified in concluding that a = c and b = d (see exercise
5). This simple realization allows us to translate vector equations into
numerical equations at will. It is also important to realize that the
correspondence between vectors and number pairs is defined only relative
to a basis. Each basis gives rise to a different system of coordinates.
Notice, however, a few basis-invariant relations (0, 0) is always the zero
vector 0; (1, 0) is always e1; (0, 1) is always e2.

3.2.1 Vector Operations in Coordinates

Now let's add vectors and see how the coordinates behave. Suppose y
corresponds to (a, b)that is, y = ae1 + be2and w corresponds to
(c, d). Then

v+w = aei+be2+cei+de2 ==(a+c)ei+(b+d)e2.
Thus, v+w corresponds to (a+c, b+d). What could be simpler! Adding
vectors is equivalent to adding corresponding coordinates. Furthermore,
scalar multiplication by a number K is equivalent to multiplying both
coordinates by K.

To teach our computer to manipulate vectors we need only represent
vectors as pairs of numbers (coordinates relative to a basis) and define
the procedures ADD, which takes as inputs two pairs of numbers, and
MULTIPLY, which takes as inputs a number and a pair:

TO AIDD ([A B], [C D])
RETURN [(A + C) (B + D)]

TO MULTIPLY (K, [A B])
RETURN [K*A K*B]

(For simplicity, we'll pretend that the computer is smart enough to know

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Coordinates for Vectors

y axis

v2x+3y

y

(0,0) X x axis

(23)

w
X

0

131

Figure 3.14
(a) Cartesian coordinates and the standard basis for vector coordinates. (b) The
length of a vector y = (vx, v.,) is given by Ivi2 = V + V.

that + is the symbol for "ADD," so that it will now know how to interpret
expressions like "[1 2] + [2 3]" or "V + W" where V and W have been
defined as pairs of numbers. Similarly, the definition of MULTIPLY should
tell the computer how to interpret expressions like "4* [5 6]" and "4*V."
And knowing both how to add and how to multiply should tell it how to
subtract using the rule VW V+(-1) X W. Of course, most computer
languages are not this clever, so in practice you will need to spell things
out a bit more.)

Although we can use any basis for our vector coordinates, it is con-
venient to specify a pair of reference vectors whose lengths are i (unit
length) and whose directions are perpendicular to each other. The stand-
ard choice is to use a horizontal vector x and a vertical vector y, and
to name the coordinates of a vector y by (vr, vu). In that way the vec-
tor coordinates are precisely the same as the Cartesian coordinates of
the tip of the vector, provided the tail is put at the Cartesian point
(O, O) (see figure 3.14a). Another advantage of the x, y basis is that the
length of a vector y is easily expressed in terms of the coordinates: If
y = (vi, vu), then the length of y, denoted ¡vi, is equal to the square
root of v + v. The proof of this formula, illustrated in figure 3.14b, is
a simple application of the Pythagorean theorem for right triangles.

A Note on Computer Languages and Vectors
Some computer languages aren't capable of handling vectors as single
entities. Even with these languages, the methods of this chapter will still
be useful; you just have to keep track of the separate vector components.

lb

02 + b2

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

132 Vector Methods

For example, instead of writing expressions like Z V + W (where Z,
V, and W are pairs of numbers) or [ZX ZY] - [VX VI] + [WX WY], you
could use a pair of instructions:

ZX 4- lfl(+ Wx
ZY - VI + WY

But this is not as good as being able to deal with vectors as vectors. After
all, one of the reasons for regarding vectors as conceptual entities in
their own right is that they capture the geometric intuition of displace-
ment, which is obscured if we constantly have to deal with components
separately. So if our computer language is to be a good vehicle for think-
ing about problems (rather than just some way of getting a machine to
do computations), then it helps to be able to deal with vectors directly.
Some computer languages (such as APL) have vector operations built in
so that it is not necessary to define them explicitly.

3.2.2 Rotation in Coordinates: The Linearity Principle

Now that we have seen that vector addition and scalar multiplication
are very simple when expressed in terms of coordinates with respect to a
basis, let's look at a more complex operation: rotation of vectors, which
we introduced in subsection 3.1.3. Rotation is trivial if we use direction
and length to represent a vector; the direction merely gets increased or
decreased and the length is unchanged. So let's hope that computing
rotations in basis coordinates is sufficiently simple that the advantage
of easy vector addition will not be offset. That hope turns out to be
more than justified, since when we tackle the problem of rotating in
three-dimensional space (section 3.4) we will see that direction-length
representation becomes hopelessly complex but computing with basis
coordinates still works nicely.

In solving the rotation problem, we take an indirect but instructive ap-
proach. Rather than computing the coordinates of Rotate(v, A) directly
in terms of the coordinates of y, we will instead look for an intrinsic in-
termediate representation that makes no reference to a particular choice
of coordinates. Phrasing things in such terms will be simpler and more
general; it will be the key to computing rotations in three dimensions,
as we shall see in section 3.4.

One trick that often helps in solving vector problems is to construct
a basis from vectors that have some intrinsic relation to the quantities
involved in the problem and to decompose the vector we wish to compute
in terms of this basis. In this case y, the vector to be rotated, is

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Coordinates for Vectors 133

Figure 3.15
The rotation formula Rotate(v,A) = (cosA)v + (sinA)Perp(v).

an obvious choice for one of the basis vectors. As a mate we can take
Perp(v), which we define to be equal to y rotated 900 (in the direction
of Rotate). Thus, we propose the decomposition

Rotate(v, A) = av + bPerp(v)

and try to solve for the quantities a and b. But these quantities are the
proportions of the rotated vector which project, respectively, parallel
and perpendicular to the original vector. As shown in figure 3.15, these
are by definition precisely the cosine and the sine of the rotation angle
A. Therefore, we have the rotation formula

Rotate(v,A) = (cosA)v + (sinA)Perp(v).

As a computer procedure which takes as inputs a vector (a pair of
numbers) and an angle, this is

TO ROTATE (V, A)
RETURN COS(A) * V + SIN(A) * PERP(V)

This rotation computation requires only the operations of vector ad-
dition and scalar multiplication, which we already know how to perform
using coordinates, and the new operation Perp. So the rotation problem
will be completely solved if we discover how to compute the coordinates
of Perp(v). We'll do this by using another important concept from sec-
tion 3.1.3: linearity. Since Perp is a special case of rotation, it has the
two properties which define linearityscaling and additivityand we
can use those properties in computing with it:

Perp(v) = Perp(vx + Vyy) = vPerp(x) + vPerp(y).

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

134 Vector Methods

So we can express Perp(v) in terms of Perp applied to the basis vectors
x and y. And it is easy to see that Perp(x) and Perp(y) are just
y and x, respectively. In net we have

Perp(v) = vPerp(x) + vPerp(y)
= vxy + v(x)
= (v)x + VxY,

which in coordinates means

Perp(v, v) = (vn, vi).

As a computer procedure this is expressed as

TO PERP [VX VY]

RETURN [-VY VX]

which completes the reduction of rotation to operations the computer
can perform.

It's worth a moment to reflect on the particular use of linearity here, as
it expresses the important general compatibility of linear operations with
basis coordinatization. By taking advantage of scaling and additivity, we
reduced the problem of computing Perp(v) to the much simpler problem
of computing Perp for the basis vectors x and y. This reduction to
special cases is important enough to warrant a special name: the linearity
principle.

Linearity Principle If L is a linear vector operation and we know how L
acts on some basis e1 and e2, then we can compute L(v) for any vector
y by expressing y in terms of the basis. More precisely,

If y = ae + be2 then L(v) = aL(ei) + bL(e2).

Let's rephrase this principle. Expressing a vector in terms of a basis is
a way of decomposing the vector into two pieces (an e1 and an e2 piece),
and linear operations are "compatible" with this kind of decomposition.
Compatible really means that in applying a linear operation, one can
work with the pieces separately. Another way to say this is that linear
situations are those in which it really is true that "the whole is equal
to the sum of the parts." Linearity is a technical form of the kind of
assumption that allows complex problems to be broken into pieces that
can be worked on independently.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Coordinates for Vectors 135

Exercises for Section 3.2

1. Using the coordinate equations we derived, verify that Perp and
Rotate are linear. Suppose we define the operation L by L(v) = vi (the
length of y). Show that L satisfies scaling but not additivity.

2. Using the rotation formula in coordinates, give an algebraic proof of
the "obvious" final step to the proof of the vector POLY closing theorem
of subsection 3.1.3. That is, show that if RA(V) = V for some A which
is not a multiple of 360, then V = O. [A]

3. Use the vector form of the POLY closing theorem to deduce that if
A = 360/n where n is a positive integer, then

sinA+sin2A+..+sin(n-1)A=0,
cosA+cos2A+...+cos(nl)A=---l.
Use the computer to check these equations numerically for various values
of n. [A]

4. Show how to translate between the (vr, v) and the heading-length
representations of vectors. [A]

5. When can two vectors be used as a basis? In particular, given y1 =
(vii, vip) and y2 = (v2X, v2) (with coordinates given with respect to
the standard x, y basis), what are the algebraic conditions on the four
numbers v, v, V2x, v2,, which correspond to the geometric condition
"y1 and y2 do not point along the same line." Show that if vj, v1,,, V2x,
and v2 satisfy this condition, then y1 and y2 actually are a basis. That
is, show that for every vector y there is exactly one pair of numbers (a, b)
with y = av1 + by2. [HA]

6. As a particular example of the previous exercise, show how to express
the standard basis vectors x and y in the form

x = av1 + '2,
y = cv1 + dv2.

That is, solve for a, b, c, and d in terms of v1, v2, and V2y. [Al

7. When do y1 and y2 form a basis such that, if one uses the coordinates
given by the basis, one always has the relation Perp(a, b) = (b, a)?
Answer in terms of algebraic conditions on v1, y11,,, V2x, v2, and also
in terms of geometric conditions on y1 and y2. [HA]

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

136 Vector Methods

8. Show that DUOPOLY (A, B, C, -B) draws an ellipse when A, B, and
C are small. (HAI

3.3 Implementing Turtle Vector Graphics on a Computer

In the first part of this chapter we got acquainted with vectors primarily
as a language for analysis. Now that we have an important set of vector
operations implemented on the computer, we are in a position to build
computer representations of complex geometric phenomena. We can
even construct and explore worlds beyond planar turtle geometry.

We'll begin by using vectors to implement the most important features
of an ordinary planar turtle. This will form a basis for constructing a
turtle that moves in three dimensions.

3.3.1 Turtle State

We said in chapter 1 that the state of a turtle is specified by giving the
turtle's position and heading. Once we decide how to represent those
in terms of vectors we will need to represent the state-change operators,
FORWARD, BACK, LEFT, and RIGHT, in terms of basic vector operations.

Although we have used vectors so far oniy to represent displacements,
there is an obvious way to represent positions with them. Simply select
some fixed reference point (call it the origin) and represent an arbitrary
position by the vector that points from the origin to the point of interest.
This is like telling someone where something is by saying how to get
there from some agreed reference point. Since what we're interested in
is getting lines to appear on a computer display, it's only natural to
choose the origin to be the (O, O) point on the display. We'll call the
position vector P. Furthermore, we can choose the size and orientation
of the basis vectors x and y so that the coordinates (vi, v) of any vector
y are precisely the Cartesian x and y coordinates of the corresponding
point on the display screen.

Besides representing positions, we must also have some way to get
lines to appear on the screen. To accomplish this, we'll assume that our
computer graphics system is equipped with a display command

DRAWLINE([STARTX START], [END END])

which takes as input two Cartesian coordinate pairs and draws a line
between the specified points. Most graphics systems include this com-
mand, or something similar.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Implementing Turtle Vector Graphies on a Computer 137

Figure 3.16
Position and heading vectors for a planar turtle.

Now how about heading? You've probably been thinking of turtle
heading as an angle, but there is a very direct way to specify heading as
a vector: Simply take any vector that points in the direction the turtle
is pointing. To standardize matters we'll use the vector of length 1, and
we'll call this H.

So there we have it: Turtle state is specified by P, which can be an
arbitrary vector, and H, which can be an arbitrary vector of length 1.
Next we must specify how the state-change operators change P and H.

3.3.2 State-Change Operators

As shown in figure 3.16, going forward some distance d displaces the
turtle's position along a vector of length d which points in the heading
direction. That is, the displacement vector is d X H. The new position is
P + dR. Of course, FORWARD doesn't change H at all. Besides changing
the turtle's state, FORWARD must also draw a line on the display screen,
if the pen is down. We haven't mentioned details about how to keep
track of the pen. We'll leave it to you to outline a more complete
turtle implementation that takes care of this and other matters. See
the exercises at the end of this section.
LEFT and RIGHT are even easier than FORWARD, as they just rotate the

heading vector and do nothing else; H ROTATE (H, ANGLE).

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

138 Vector Methods

Summary: A Vector-Based Turtle Implementation

Here in capsule form are the state and state-change operators for a turtle,
expressed in terms of vectors. See the exercises below for details needed
in actually implementing a turtle.

Turtle State
The turtle's state is represented by two vectors, P and H. By convention,
H is always a vector of length 1.

State-Change Operators

TO FORWARD DISTANCE

NEW.P i- p + (DISTANCE * H)

IF PEN. IS.DOWN THEN DRAWLINE (P, NEW.P)

P NEW.P

TO BACK DISTANCE

FORWARD (- DISTANCE)

TO LEFT ANGLE

H - ROTATE(H, ANGLE)

TO RIGHT ANGLE

LEFT (- ANGLE)

Subprocedures Used in Computing Rotations

TO ROTATE (VECTOR, ANGLE)

RETURN COS (ANGLE) * VECTOR + SIN (ANGLE) * PERP (VECTOR)

TO PERP [VX VY]

RETURN [-VY VX]

Basic Vector Operations

TO ADD ([A B], [C D])

RETURN [(A + C) (B + D) i

TO MULTIPLY (N, [A B])

RETURN [N*A N*B]

Exercises for Section 3.3
The exercises below are concerned with fleshing out the details of the
vector turtle implementation. Doing them will help prepare for pro-

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Implementing Turtle Vector Graphics on a Computer 139

TURTLE HEIGHT

NOSE

LEFT LEG RIGHT LEG
(.

TURTLE WIDTH

Figure 3.17
Specification of triangular turtle indicator.

graming nonplanar turtles, which is to come.

[P] Show how to keep track of the turtle's pen using the PEN. IS. DOWN

variable, which is checked by the FORWARD procedure. Give procedures
for PENUP and PENDOWN.

[P] We ignored the problem of actually drawing the little trian-
gular turtle indicator. This involves erasing and redrawing the indicator
each time we change the turtle's state. To keep things simple, suppose
there is an ERASELINE command that takes inputs as DRAWLINE does
and erases the specified line. Suppose the turtle is specified as an isos-
celes triangle of a given TURTLE. WIDTH and TURTLE. HEIGHT (see figure
3.17). Show how to compute the three vertices of the turtle triangle
(which we can call, say, NOSE, LEFT. LEG, and RIGHT . LEG) in terms of
TURTLE.WIDTH, TURTLE.HEIGHT, P, and H. Use this to implement pro-
c'edures DRAWTURTLE and ERASETURTLE which are used by FORWARD and
LEFT to redraw the turtle indicator. [HI

[P] Add to your implementation the procedures for XCOR and YCOR,

which output the (x, y) coordinates of the turtle, and HEADING, which
gives the angle of H with respect to some fixed direction.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

140 Vector Methods

3.4 Maneuvering a Three-Dimensional Turtle

We (and the turtle) now proceed into new, three-dimensional territory.
If you like, you can now begin to think of the turtle as a spaceship that
moves freely in space, leaving an indication of its trail. Maneuvering the
turtle in three dimensions is the most substantial project we've discussed
so far. It contains two main parts: deciding how to move the turtle and
deciding how to display the three-dimensional path on a two-dimensional
screen. We'll treat the first of these problems here and the second in
section 3.5. Vectors play a central role in both parts of the project.

First of all, we will need three-dimensional vectors to represent three-
dimensional space. Conceptually this is no problem at all; a vector is still
an arrow with a certain length and with a certain direction representing
a displacement. In terms of coordinates we simply need to add a third
vector to the x, y basis. Call it z, and for convenience make it of length
i (unit length) and perpendicular to both x and y. The correspondence
between vectors and coordinates is now

y corresponds to (vi, v, v) provided y = vx + Vy + VzZ.

Vector addition and scalar multiplication still follow the same patterns:
addition and multiplication of each component, respectively.

As in two dimensions, position can still be specified by a vector which
we will call P, running from the origin (0, 0, 0) to the turtle's position.
Heading can still be a vector with length i which we'll call H, and
FORWARD is still

P - P + DISTANCE X H.

Now we are done with FORWARD.

3.4.1 Rotating the Turtle

Although the FORWARD command in three dimensions is a straightforward
modification of the two-dimensional version, generalizing the rotation
commands is not so simple. In fact, the problem is deeper than the
technical issue of computing rotations in three dimensions: We must
decide which three-dimensional rotation we wish to represent, which is
to say, though "left" has an unambiguous meaning in the plane there
are many different possibilities in three-dimensional space.

The real problem is that H by itself is insufficient to specify the
orientation of the turtle, as it only tells which way the turtle's nose is
pointing.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Maneuvering a Three-Dimensional Turtle 141

Figure 3.18
Turtles in three dimensions need an extra vector, L, to specify the plane in which to
rotate.

Two turtles with the same H can rotate "LEFT" in different directions (see
figure 3.18). To solve the ambiguity we can add to the turtle's state a new
unit-length vector L which is perpendicular to H. We can interpret L as
pointing to the turtle's left. Now LEFT can be geometrically specified as
a rotation of both H and L in the plane containing them (see figure 3.18).

Here we are rotating three-dimensional vectors through an arbitrary
angle in some arbitrary plane. Surely that seems like a terribly difficult
computation. But no, it is simple! The reason is this: When we discussed
two-dimensional rotations, we wrote down the answer in intrinsic terms.
Recall the rotation formula of subsection 3.2.2:

Rotate(v, A) (cos A)v + (sin A)Perp(v).

Now, Perp(H) is L. Therefore we have

Rotate(H,A) = (cosA)H + (sinA)L.

And Perp(L) is H, so

Rotate(L, A) = (cos A)L - (sin A)H.

Does that seem too simple? By writing down the rotation of a two-
dimensional vector in intrinsic form, we automatically have a completely
general formula for rotating any vector through any angle about any axis
(perpendicular to the vector) in any dimensional space, provided only

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

142 Vector Methods

that the perpendicular vector is known. Such reasoning is extremely
important and is worth thinking through. So let's run through the
argument again, slowly.

Consider the plane that contains both H and L. We must rotate H and
L inside that plane by some angle A. But forget about the rest of the
three-dimensional world outside the planeit is entirely irrelevant to the
rotation operation. In a plane, however, we have solved the problem of
rotating a pair of perpendicular vectors. All that remains to be done is
the translation back to three dimensions. And that is easy, provided we
have been prudent enough to express the answer in a form that makes
no commitment to using a coordinate system that is restricted to the
plane. The rotation formula makes no commitment to any coordinate
system at all. Merely regarding

Rotate(v, A) = (cos A)v + (sin A)Perp(v)

as a vector equation in three dimensions solves the problem of translating
from the planar case to three dimensions.

If the fundamental vector operations on your computer accept (or can
be modified to accept) vectors with three components, then the rotation
equation readily translates into the program

TO ROTATE (VECTOR, PERPVECTOR, ANGLE)

RETURN (COS ANGLE) * VECTOR + (SIN ANGLE) * PERPVECTOR

Notice that the perpendicular to the vector must be supplied as an
input, since the rotation is not well defined without it. In fact, the only
differences between this program and the planar rotation program of
section 3.3 is that Perp(V) is accessed as a variable rather than computed,
and the additions and scalar multiplications are performed on vectors
with three components rather than two.

In terms of coordinates, the rotation equation translates into three
component equations, which give the components of the rotated vector
(iv) in terms of the components of y and its perpendicular (pv):

rv = y1 cos A + pv1 sin A,

rv, = v, cos A + pvy sin A,

rv2, = y1 cos A + pv sin A.

3.4.2 Rotation Out of the Plane

Are we done with state-change operators? If we stop here the turtle will
certainly walk around in three-dimensional space, but only in one plane:

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Maneuvering a Three-Dimensional Turtle 143

Figure 3.19
The pitch operation rotates H about the axis determined by L. Adding U to the
turtle's state makes the rotation easy to compute.

that specified by the initial pair H and L; To gain full motion in three
dimensions we also need to be able to pitch the turtle out of that plane
by rotating about the L axis, and to roll it by rotating around the H
axis.

The pitch operation is illustrated in figure 3.19. L remains invariant,
but we must rotate H out of the plane of L and H. To compute this we
need have in hand a vector that is perpendicular to H and perpendicular
to L (the axis of rotation). If you are clever you should be able to
construct this vector out of H and L, but let's be even more clever: Let
us always carry along, as part of the turtle's state, a third unit-length
vector, U (for "up"), perpendicular to both H and L. This will be a
slight extra burden, since we will need to rotate U as well as H when
the turtle pitches. However, such rotation will be easy because H is
Perp(U) for that rotation.

So now we have a neat and symmetrical set of rotation operators to
change the turtle's orientation, represented as three mutually perpen-
dicular vectors H, L, and U. In fact, we can use the parallel term YAW
instead of LEFT so that in controlling our "spaceship turtle" we can
employ the standard three-dimensional navigational terms roll, pitch,
and yaw. In making any of these rotations, two of these vectors change
and the third remains fixed. For rotating one vector y of the changing
pair, the other changing vector (or its negative) serves as Perp(v).

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

144 Vector Methods

3.4.3 The State-Change Operators, in Summary

The position of the three-dimensional turtle is represented as a three-
component vector P. The orientation (the three-dimensional equivalent
of the heading part of the state) is represented by a trio of mutually
perpendicular unit-length vectors, H, L, and U. These can be initialized
to be the basis vectors x, y, and z, which in coordinates are (1,0, 0),
(0, 1, 0), and (0, 0, 1). The state-change operators are

TO FORWARD DIST

P p + DIST * H

TO YAW ANGLE

TEMP - ROTATE (H, L, ANGLE)
L - ROTATE (L, -H, ANGLE)

H - TEMP

TO PITCH ANGLE

TEMP - ROTATE (H. U, ANGLE)

U ROTATE (U, -H, ANGLE)

H TEMP

TO ROLL ANGLE

TEMP ROTATE (L, U, ANGLE)
U - ROTATE (U, -L, ANGLE)
L TEMP

TO ROTATE (VECTOR, PERPVECTOR, ANGLE)

RETURN (COS ANGLE) * VECTOR + (SIN ANGLE) * PERPVECTOR

Note the use of the variable TEMP to avoid deleting the old values of H
and L before we are done using them. If you use the rotation equation
in coordinate form you will have to be even more careful not to delete
old variables by assigning new values before you're done using the old
ones.

3.5 Displaying a Three-Dimensional Turtle

Our problem, simply put, is to make some marks on the computer
display screen that will fool us into believing that the screen is a window
looking out onto the three-dimensional world of the turtle. Imagine we
are looking at something in spacesay, a green line segment drawn by
our turtle. The mechanism of seeing is that the green light reflected off
the line segment travels in straight rays to our eye. Suppose there is

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Displaying a Three-Dimensional Turtle 145

a window between us and the turtle. If we draw green marks on the
window along the line of sight between the eye and the line segment, we
can erase the real line segment and still see the same image; the rays of
green light reaching our eye will be unchanged. That's the geometrical
process we need: projecting along the line of sight onto a plane which is
going to be our computer display "window."

3.5.1 Parallel Projection

Actually, in order to project a line segment we need only worry about
how to project the endpoints of the segment, since the projection of
the line segment is just the segment on the window connecting the
projections of the endpoints. (This can be proved by projecting a line
segment point by point using the formulas we are about to derive for
point projection.)

Rather than starting out with the general projection problem, it will
be to our advantage to begin with simpler and more specialized cases
and to proceed in stages toward more general and realistic but also more
complex projections. In particular, let's first imagine that the eye is far
enough from both the screen and the object being looked at that the
lines of sight from the eye to all points on the object are essentially
parallel. This is known as parallel projection. Moreover, if we assume
that the eye is looking along the z axis of our coordinate system, then we
can imagine the window to be the x, y plane. With these assumptions,
projection amounts simply to sliding a point parallel to the z axis until
the z coordinate is zero, but with x and y remaining the same (see figure
3.20). This is equivalent to "losing" the z component of the vector-basis
decomposition of the position. In coordinates we have

(display, display) == Project(v, v,,,, v) = (vr, vu).

For many purposes this trivial projection is quite sufficient. But
suppose we want to move the eye around to look at the turtle's drawing
from other perspectives. Consider first a window, still centered at the
origin of our coordinate system, but pitched, rolled, and yawed with
respect to the standard x,y, z basis as shown in figure 3.21a. This is
equivalent to having three new (but still mutually perpendicular and
unit-length) basis elements, which we call ex, ey, and ez (e for "eye").
In fact, we could produce these vectors by pitching, rolling, and yawing
x, y, and z in exactly the same way we operated on the turtle's H, L,
and U.

In order to solve this new projection problem we need to find the x and
y coordinates of the point we want to project, but now with respect to

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

146

z

(x,y) (x,y,z)

Vector Methods

Figure 3.20
Simple parallel projection amounts to "losing" the z component at each point.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Displaying a Three-Dimensional Turtle 147

ez

d
s

Figure 3.21
(a) Projection onto an arbitrary plane involves finding components with respect to
a new basis. (b) The ex component of y is found by projecting y onto the line
determined by ex.

the new basis ex, ey, ez. As you might expect, this problem of finding the
coordinates of a point in an arbitrary basis is of great general importance
and is worth a little time and energy.

Suppose we have ex, ey, ez and a vector y, and we want to compute
the components of y with respect to ex, ey, ez. Focus on ex. First draw
the line continuing ex. Next draw a perpendicular through the line that
intersects the point of interest (the tip of y). The component we want is
precisely the length of the segment s from the origin to the base of the
perpendicular (figure 3.21b). This is because the construction effects a
decomposition y = s + p, where s is a scalar multiple of ex and p is in
a plane perpendicular to ex and can thus be subsequently decomposed
into a sum of multiples of ey and ez. In other words:

The ex component of a vector y, that is, the value a in the decomposition

y = aex + bey + cez,

is precisely the perpendicular projection of y onto the line of ex.

V

V

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

PROJ(t) J(v)
PROJ(vl PROJ (VI

Proj(v + t) = Proj(v) + Proj(t) Proj(av) = aProj(v)

Figure 3.22
Proj is linear.

The ey and ez components are found similarly. So now we are led to
the problem of studying, in vector terms, the geometric operation of
projecting a vector onto a line.

3.5.2 Dot Product: Another Application of Linearity

Given two vectors y and w, we wish to compute the length of the
perpendicular projection of y onto the line determined by w. We denote
this length by Proj(v, w). It is natural to think of Proj(v, w) as an
operation on y, but one that, of course, depends on w. We can suppress w
in our notation and just write Proj(v) to emphasize this way of thinking
about Proj(v,w).

If subsection 3.2.2 is still fresh in your mind, you may be able to guess
the observation that solves the projection problem: Proj is linear! Figure
3.22 demonstrates that Proj satisfies both scaling and additivity:

Proj(av) = a X Proj(v),

Proj(v + t) = Proj(v) + Proj(t).

From experience with the rotation operator you should expect that this
fact in itself is sufficient to allow us to compute projections in terms of
coordinates. But rather than grinding out the answer, let's try a more
insightful approach. We begin by indulging in some wishful thinking
(a much-underrated method of doing mathematics). Remember that
Proj(v, w) is an operation with two arguments, y and w. Wouldn't it be
nice if the order of the arguments didn't matter, that is, if Proj(v, w)
were always equal to Proj (w, y)? We now make two observations:

148 Vector Methods

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Displaying a Three-Dimensional Turtle 149

This relation could not be true in general, because Proj(v, w) doesn't
depend on the length of w yet scales as y is enlarged.

If y and w happen to have the same length, then Proj(w, y) is equal to
Proj(v, w), since the diagrams for projecting y onto w and for projecting
w onto y will be symmetric.

Let's go farther by causing the accident in 2. Force y and w to
have the same length by multiplying each by the length of the other to
produce wiv and vjw. That is, forget for the moment about Proj and
concentrate on a a new operation called Sproj, for "scaled projection,"
defined by

Sproj(v,w) = Proj(Iwv, viw).

Now it's an easy matter to check algebraically that Proj doesn't lose its
linearity as a function of y in its metamorphosis into Sproj. Because of
the symmetry in arguments, Sproj must be linear in both arguments:

Sproj(v, aw + bt) a x Sproj(v, w) + b X Sproj(v, t),
Sproj(av + bt, w) = a X Sproj(v, w) + b X Sproj(t, w).

This looks so much like multiplication of numbers that Sproj is called a
producta dot productand denoted

Sproj(v,w) = y . w.

Compare the properties of dot product,

y w = w . y (symmetry),

y. (aw + bt) = av . w + by t (linearity in second variable),

(av + bt) . w = av . w + bt . w (linearity in first variable),

to the properties of ordinary multiplication of numbers,

xy = yx,
x(ay + bz) = axy + bxz,
(ax + bz)y = axy + bzy.

Notice that because dot product is just mutually scaled projection, it
is exactly projection for unit-length vectors. For example, taking the
standard x, y, and z basis vectors, we have

xx=1, x.y=O, x.z=0,
y.y=l, yz=Q, z.z=1.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

150 Vector Methods

Finally, we are left with the job of computing the dot product y w in
terms of coordinates. But since dot product is linear, the linearity
principle ought to reduce that computation to special cases. Those
special cases are just the dot products of all pairs of basis vectors, which
we wrote down immediately above. If you carry out the details (exercise
i below) you'll find that dot product has the remarkably simple form

V W = VW + +
Our shift in attention from Proj to dot product has led us to an opera-

tion that can be simply described in terms of coordinates. In making
the transformation we lost very little, since for unit-length vectors dot
product is absolutely identical to projection. Even if only one of the
vectors (say, w) has unit length, we can still interpret y . w as a projec-
tion, the projection of y onto w, because in scaling y by w no change
is made. For arbitrary y and w, the projection can be computed as

Sproj(v,w) vwProj(v,w)= =
wi wi

3.5.3 Parallel Projection in Coordinates; Generalizations

In subsection 3.5.1 we saw that the projection problem reduces to com-
puting the components of a vector y with respect to an arbitrary basis
ex, ey, ez. Dot product enables us to do the computation. For example,
suppose we want the projection of y onto ex. Since ex is of length 1,
that projection is exactly ex . y. In other words, the coordinates of y are
just the dot products of y with the corresponding basis vectors.

Notice how important it is that dot product is defined intrinsically in
terms of vectors. That means it is independent of the coordinate system
used to compute it. Thus, in computing ex y, we can use the standard
x, y, z basis. In a computer program, that's the only basis that would be
actually used for computation. In summary:

To find the projection of a point with respect to an eye whose orientation
is described by the triple ex, ey, ez, what we use for coordinates on the
display screen are the first and second coordinates of the point in the
ex, ey, ez basis; that is,

(display, display) = Projection of y onto ex, ey plane
= (ex . y, ey . y).

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Displaying a Three-Dimensional Thrtle 151

Figure 3.23
Projecting with respect to plane centered at some arbitrary position, e.

A simple modification of this formula allows even more general projec-
tions. Suppose the center of the window is located at some point other
than the originsay, e (figure 3.23). Then we want to have ex, ey, ez sit
at their own origin, the tip of e. With respect to that origin the position
vector is

r = y - e (r for relative position),

so the projection is still computed in the same way, only using r instead
of y:

(display, display) = Project(v) = (ex . r, ey. r) where r = y - e.

Notice in passing that we have solved the general problem of finding
coordinates of vectors with respect to a new basis and a new origin: Set
r = y - e (where e points to the new origin from the old one), and then
just pick off the coordinates of r in the new basis using dot product:

(z, y, z) coordinates in new coordinate system = (ex. r, ey r, ez . r).

3.5.4 Perspective Projection

The parallel projection we've just computed lacks some important fea-
tures of real vision. It doesn't make distant objects smaller, nor does
it have "vanishing point" behavior. (This follows from our simplifying
assumption in 3.5.1 that the eye was located very far from both the
window and the object.) We'll now see how to be more realistic.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

152

L /
Display Plane

Figure 3.24
Perspective projection of y onto the display plane.

Start with the eye located at the origin facing directly along the z axis.
Now imagine our display window located some distance L down the z
axis and perpendicular to it (figure 3.24). In order to find the projection
of the endpoint of y onto the window, we need to compute (in x and y
coordinates) the vector marked t in the diagram. To do this, introduce
the vector p in the plane perpendicular to z going through the point to
be projected. This is just the familiar decomposition of a vector into a
z component and a component perpendicular to z, which is to say,

V = VX + VyY + VzZ S + p

where

s=vz and P=VxX+VjY.

But note that our desired vector t is parallel to p; in fact it is just p
scaled by the ratio of size of similar triangles L/v:

Lt = - X p.
vz

(The similar triangles have common vertex at O and sides opposite that
vertex of t and p respectively.) So, in terms of coordinates,

Projection of y = (ti, t) = -- X (vi, vu).

That's all there is. Perspective projection in this special case is just
picking off the x and y components of position (like parallel projection)
and then scaling by the ratio of L to the z component.

Vector Methods

- - r

p

/

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Displaying a Three-Dimensional Turtle 153

In the completely general case, let an eye be located at e with orien-
tation given by basis ex, ey, ez (looking along es with ey being "up" and
ex "to the right"). Then, with the above answer transformed to the new
origin (at e) and to the new basis, the display coordinates are just

L
(display, display) = Projection of y = X (ex. r, ey . r)es r
where r = y - e.

3.5.5 Outline of a Three-Dimensional Turtle Project

This subsection outlines a number of possible implementations of a
three-dimensional turtle. Pick the level of complexity at which you feel
comfortable and work out the details there. You can always upgrade
your implementation.

I. Implement the internal vector representation for a three-dimensional
turtle, including FORWARD, ROLL, PITCH, and YAW.

LI. Implement a PROJECT procedure that takes a three-component vector
input and outputs a two-component vector for the display. Now you
can furnish the turtle with a FORWARD operation that draws lines on the
display:

TO FORWARD DIST

P 4- P 4 DIST * H

IF PEN.IS.DOWN

NEW.2D.P i- PROJECT P

DRAWLINE (2D.P, NEW.2D.P)

2D.P - NEW.2D.P

This format saves computation by projecting only when PEN. IS . DOWN.

(But this means that the PENDOWN command will have to project to
update 2D.P to account for moves made while the pen was up. Of
course, the simplest implementation could leave out the PENUP possibility
altogether.) The major decision to be made here is whether to use
parallel projection or true perspective.

III. Implement a movable eye.

A. For either parallel projection or a true perspective projection, a
rotating eye can be an advantage. This amounts to being able to roll,
pitch, or yaw the basis ex, ey, ez.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

154 Vector Methods

B. For either type of projection, one can move the origin around to
change point of view. The eye can be considered to be just another
turtle, with position given by some vector e and orientation by a trio ex,
ey, ez. So the eye can be "flown around" with FORWARD, ROLL, PITCH, and
YAW commands. For moving the eye, it may be convenient to supplement
FORWARD (e - e+DIST X ez) with two new position-changing commands:
JUMPUP (e - e + DIST X ey) and JUMPRIGHT (e d- e + DIST X ex).

IV. Implement optional features.

Changing L amounts to "zooming" the lens of the eye. Implement a
zooming feature.

Some displays may not be able to deal with coordinates bigger than
some limit. The "right thing to do," of course, is for DRAWLINE to display
only the portion of the line segment that is within the bounds of the
display. If you want a "dumb" DRAWL INE to clip off what you don't see
in this way, rather than just giving out-of-bounds errors, then you will
have to implement a procedure to clip the segment before displaying it.
We urge you to try this using vector methods. If you have a hard time,
look ahead to subsection 6.1.3.

You may have noticed that the projection formulas we derived will
also project things from behind the eye. If you object to this, we leave
it to you to implement a fix.

Whenever the eye is moved, you will have to clear the screen and rerun
from scratch the turtle commands and programs which drew things. If
you plan on moving the eye a lot (for example, implementing a three-
dimensional spaceship docking program where what you see on the
screen is a changing view of a fixed object), then this may become a
serious problem. One way to help matters is to build up a display list
of connected sequences of three-dimensional points which gets added to
each time a FORWARD (with the pen down) is issued. The whole list must
then be redisplayed each time the eye is told to rotate or move. You
will have a special problem if you are displaying a turtle itself, because
that part of the list must change after every turtle command rather than
only on moving the eye. One simple way to handle this is to have the
first sublist in the display list be the picture of the turtle, to be treated
specially. It must be erased and redrawn after each move.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Displaying a Three-Dimensional Turtle 155

E. Our outline of the project shows that, as far as internal representation
is concerned, an eye is exactly the same thing as a turtle. So why not
implement a three-dimensional system that is just a multiple turtle setup
(having no special eye at all), in which you can issue commands to any of
a number of turtles? Then you can change perspective merely by telling
the projection operation which turtle's point of view you want to take.
A fancy version of this system can display each turtle in a different way
(for example, one as an airplane, one as a pyramid, etc.) and will allow
you to talk to several turtles at once and thus choreograph turtle dances!

Exercises for Section 3.5

Taking advantage of the linearity in both arguments, verify the
formula for dot product in terms of coordinates.

Compute the perpendicular projection (not mutually scaled) of one
vector onto another in terms of coordinates. [HA]

Prove the following special cases of dot product: y . w = O for any
pair of perpendicular vectors; y . y = vi2. [H]

Show that y w = Ivi Iwi cosA where A is the angle between y and w.
Notice that this formula shows how to evaluate dot product in coordinate
independent terms. [HA]

Represent a triangle's sides as vectors y, w, and t, and, using the
above formula, derive the law of cosines:

t2= Ivi+IwI 2IvIiwI cosA

where A is the angle opposite t. [HA]

Try the following exercises after you have implemented a three-dimen-
sional turtle system.

[P] Study analogs to POLY on your three-dimensional system. Should
the analog be

TO POLY

REPEAT FOREVER

FORWARD

ROLL

YAW

PITCH

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

156 Vector Methods

or

TO POLY

REPEAT FOREVER

FORWARD

ROLL

JUMPUP

YAW

JUMPRIGHT

PITCH

or what? Do you expect these to draw simple figures like cubes or tetra-
hedra? When do these close? Is there a general behavior analogous to
POLY laying down equal chords of a circle? [H]

[D] POLYs in three dimensions often wander off to infinity. What goes
wrong with the proof that POLYs are closed, which we gave in subsection
1.2.2? [HA]

[PD] Implement three-dimensional analogs to DUOPOLY or MULTIPOLY.
To start, restrict each POLY to a simple closed planar figure (FORWARD,

YAW, FORWARD, YAW, etc.) but put different POLYs in different planes.
There are lots of options for how to do this. You may want to generate
the set of vectors for each POLY first and then just circle your way
through each set. Or keep two orientation bases around, YAWing each in
turn and alternating H vectors for the increment to position in FORWARD.

Compare figures using the same YAW angle but many different initial
orientations. Look particularly at figures where the planes of the POLYs

are perpendicular. Look at figures where each POLY is a circle, but where
one takes 2 or 2 or 3 times as many steps as the other. Some of the
most interesting planar DUOPOLYs happen when the symmetries of the
two POLYs are relatively prime. Does this still hold true? Take one simple
special case, such as squares in mutually perpendicular planes (DUO- or
TRI-POLY5), and do an exhaustive study of possible figures depending on
initial orientation within each plane.

[PD] An interesting problem arises if we want the eye to shift its gaze
toward some specified point p. The ez vector should now point towards
p. But where should ex and ey be pointing? One way to settle this is
to make the "minimal" rotation of the ex, ey, ez basis which moves ez
from its old direction to the new; that is, rotate ez in the plane of ez
and p toward p. This is a rotation about an axis perpendicular to the
ez, p plane, and we can imagine ex and ey just carried along. (Think of

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Displaying a Three-Dimensional Turtle 157

the trio ex, ey, ez as a rigid body. Skewer it through their origin with a
line perpendicular to the plane ez, p and rotate.) Can you invent a way
to carry out this rotation with ROLL, PITCH, and YAW, or by any other
means? Use this to implement a LOOKAT command that turns the eye
toward a specified point. [H]

For each view of the standard x, y, z basis shown in figure 3.25a, say
where the eye is located to produce that view. If this is hard for you,
practice with your three-dimensional simulator. Imagine looking down
at a square-tiled floor. Which angles appear greater than 90°; which
less? For example, the edges of tiles far away may appear as in figure
3.25b.

[PJ Implement an airplane that can fly around, from which what
you see on the display screen is the landing strip (with mountains in the
distance) from the view of the pilot.

[P] Implement a spaceship and a docking situation similar to that
of the airplane in exercise 11. Spaceship controls are different, however:
A rocket burst increments (vector) velocity by adding on a vector in
the direction the ship is pointing, a roll burst starts continuous rotation
around the ship's II, etc.

[PDD] Make a four-dimensional turtle system! There are lots of
options for projecting. Although parallel projection to two dimensions
is easiest, you may want to think of the perspective projection process
in this way: Imagine a four-dimensional turtle sitting at O = (0, 0, 0, 0)
looking down the t axis (x, y, z, t basis) through a "three-dimensional
window" at t = L. The turtle sketches on (in) the "window" the
object it sees, and hands this three-dimensional image to you to walk
around and look at in ordinary three-dimensional space. Suppose the
object the turtle is looking at is a four-dimensional cube. [Subproblem
1: Describe a four-dimensional cube by considering the sequence square
(two-dimensional cube), three-dimensional cube, four-dimensional cube.
Describe it in such a way that your turtle can draw it.] What do you
see when you walk around or rotate the three-dimensional image? What
do you see as the four-dimensional cube is rotated but your position
with respect to the three-dimensional image remains fixed? What can
you say about the three-dimensional "thing" that is the projection of
the four-dimensional cube? [Subproblem 2: Describe four-dimensional
rotations in the same way we did three-dimensional. Do things rotate
around lines, as in three dimensions, or around planes? Correspondingly,

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

(a)

(b)

Figure 3.25
(a) A basis from various points of view. (b) Square tiles viewed obliquely.

Y/
:- Ai

158 Vector Methods

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Displaying a Three-Dimensional Turtle 159

will there be four fundamental rotations (one for each or the mutually
perpendicular axes) or six (one for each mutually perpendicular plane)?]
Use your simulation to help you, but try above all to get an intuitive
feel for what you will see if you rotate the cube or change your point of
view. You may wish to forget about implementing a turtle to draw the
cube and, instead, just project vectors representing edges of the cube.
[H]

[P] If you have a color display, implement a three-dimensional display
"for two eyes," where what the right eye sees is in green and what the left
eye sees is in red. With glasses having red right and green left lenses you
should get a good three-dimensional effect. Such glasses are available
with books that have three-dimensional pictures in them. (A simpler
color system would "use only one eye," but would encode depth as, say
near being red, gradually mixing in blue until far distance is pure blue.)
If you can make hard-copy printouts of your screen, but not in color, you
can get the same effect by tracing separate left and right eye printouts
in red and green onto a single sheet of paper. There are also special
glasses for reading three-dimensional topographical maps for which you
can use two black-and-white printouts directly.

[P] Design some three-dimensional space-filling curvesfor example
on the model of FILL of chapter 2, except winding through 27 cubes to
make a larger cube instead of 9 squares to make a larger square. Can
you make a three-dimensional analog of HILBERT? These may be quite
impressive in a two-eye version of a three-dimensional display such as
suggested above.

[P] Grow some three-dimensional spirals, horns, and trees analogous
to the work done in chapter 2 in two dimensions. (Spirals that wind in
three dimensions are called loxodromic spirals.)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Topology of Turtle Paths

Any path i8 only a path

Carlos Castaneda

Turtle geometry has so far been the study of the process of drawing
paths and patterns. In this chapter we study another kind of geometric
process: how a turtle path can gradually change. For the most part we
will be studying closed paths, and we'll of course be representing those
paths as turtle programs. But in addition we'll be paying close attention
to a more familiar representation of paths: pictures. Our starting point
will be the closed-path theorem, which says that the total turning of any
closed path is an integer multiple of 3600. By focusing on how the total
turning of a path changes as we vary the path, we will be introducing
the branch of mathematics concerned with the topology of curves in
the plane. As an application of ideas from topology, we'll describe an
algorithm that enables the turtle to escape from any maze.

4.1 Deformations of Closed Paths

Look at the three paths in figure 4.lac. By the closed-path theorem
of subsection 1.2.1, the total turning of each path must be an integer
multiple of 360°. It happens that each of these paths has total turning
720°. How can we be sure of that? For the first path, which has only
90° angles, it's easy to add the turns by inspection. But the other two
paths have rounded parts consisting of many small segments and turns.
Adding up the total turning vertex by vertex would be an extremely
laborious task. Nonetheless, most people are extremely confident that
path b, and even path c, has the same total turning as path a. Good
mathematics supports their intuition. You may wish to take a moment
now to test your own intuition in figuring out the mathematics behind
this phenomenon.

Start with any closed curve. Now make a very small change in it to
produce a second closed path (figure 4.1, d and e). How does this change
affect total turning? Since the path and the turning at each vertex are
changed only a little, the total turning over the path can change only a
little. But we are assured by the closed-path theorem that if the total

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

(d) (e) (f) (g)

Figure 4.1
(a-c) Three paths with total turning 7200. (d-g) A deformation as a sequence of
small changes.

turning changes at all it must change by at least 3600. Therefore our
tiny change in the path cannot change the total turning.

Now, if one small change cannot affect total turning, a second one
can't either, and we see that even a long sequence of small changes can-
not affect total turning. A sequence of small changes is called a defor-
mation (figure 4.1, eg), and we conclude that making a deformation
in a closed path cannot change the total turning. In figure 4.1, we can
easily imagine a sequence of small changes which defines a deformation
from a to b to c. This ensures that all three paths have the same total
turning.

Tlie general form of reasoning here is very important. If we have any
quantity associated with a geometric figure that satisfies the conditions
that small changes in the figure cannot change it very much and that
permissible values of the quantity are spaced far apart (in this case, 360°),
then the quantity can never change under any deformation. Something
that doesn't change under deformations is called a topological invariant.

162 Topology of Turtle Paths

(a) (b) (c)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Deformations of Closed Paths 163

We will have much to say about other topological invariants in future
chapters. For now, remember the following principle:

Deformation Principle Anything that satisfies the two conditions above
must be a topological invariant.

Using these terms, we can augment the closed-path theorem of 1.2.1:

Closed-Path Theorem Total turning is a topological invariant for closed
paths. For any closed path, the total turning is an integer multiple of
3600.

(In later chapters we will find it convenient to measure angles in radians
as well as in degrees. When we use radian measure, we'll say that total
turning is an integer multiple of 2ir.)

4.1.1 Turtle Paths: Pictures and Programs

If the reasoning of the preceding paragraphs seemed precise, you may be
surprised to discover that a crucial point, the definition of deformation as
"a sequence of gradual changes in a path," was left extremely ambiguous.
To demonstrate this, we present three examples of "a sequence of gradual
changes" and ask you to decide whether or not each should be considered
a legitimate deformation. The first example, pictured in figure 4.2a,
shows how to remove a ioop from a closed curve by forming a kink.
This certainly looks like a small change at each step, but it changes the
total turning of the curve from 720° to 360°. Surely something is wrong
here! Figure 4.2b gives an even more blatant example of two curves
that look "the same" and yet have different total turning. Here we
have two circles which are identical except for orientation (the direction
in which the turtle draws them). Are these circles the same, or not?
Finally, figure 4.2c illustrates a phenomenon we'll call an overlap. Again,
there is only a gradual change at each stepin fact, total turning does
not change throughout the entire process and yet the overlap creates
crossing points where there weren't any before. Are we to allow this as
a topological deformation?

The point of these examples is that in deciding what constitutes a
"small change" to a curve, we must consider more than just the picture
of the curve (the set of points belonging to the curve). One way to
think of the additional information that must be taken into account is to
regard the closed curve as the path traversed by a turtle. (We can always

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

(c)

Figure 4.2
(a) Removing a ioop by forming a kink. (b) The "same" path with two different
values for total turning. (c) Creating an overlap.

164 Topology of Turtle Paths

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Deformations of Closed Paths 165

regard a truly curved line as approximated by a turtle path consisting
of many short segments as with arc and circle programs of subsection
1.1.2.) Then a "small change" should be required to be "small" not so
much with respect to changes in the picture of the curve as with respect
to changes in the process followed by ¿he turtle in traversing the curve.

Let's apply this reasoning to the second of our two mysterious ex-
amples, the two circles that are "the same" except for orientation. Of
course, it's only the pictures, the set of points, that are the same. Seen
as process, the turtle is constantly turning left while drawing one circle
and right while drawing the other. So the two processes are different,
and it's not at all mysterious that they can have different total turning.

We can make a similar observation about the kink. Note that the
turtle does a complete 3600 loop-the-loop in the kink, except at the last
step. It's clear that there is going to have to be a violent change in the
turtle program, such as throwing away a whole bunch of steps (which
contain the loop-the-loop turning) in moving to the final figure. So the
tendency to regard kink removal as a deformation is just a trick of your
intuition coming from the fact that you usually think of paths as pictures
rather than as turtle programs.

In our third example, the overlap, we are in the opposite situation-
the appearance of the two crossing points seems like a big change in the
picture, but in terms of process the paths are not very different. The
overlap is a legitimate deformation. Indeed, those crossing points are
totally invisible from a local, turtle point of view. If we assume that the
turtle doesn't leave any marks, then there's no way for the turtle to tell
if it is crossing its own path. A crossing point is a global, not a local
phenomenon. There is no way to see a crossing point on the basis of the
local information that describes what the turtle is doing at a particular
instant.

4.1.2 Correlating Pictures and Programs

We've seen how the idea of deformation is clarified when we regard paths
as turtle programs. But any picture of a path, such as figure 4.la, can
be implemented as a program in many ways. For example, one of the
LEFT 90 turns could be replaced with a RIGHT 2T0. This would change
the total turning of the path, subtracting 210° at the vertex rather than
adding adding 90°. If we want to assign a single number for total turning
to a path (picture) then we had better resolve this ambiguity.

The easiest thing to do is to agree on a convention that only angles
less than 180° should be allowed in translating a picture to a program.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

166 Topology of Turtle Paths

____ B

Figure 4.3
Unkinking viewed as a turtle program.

This will establish a unique contribution to total turning between 1800
(LEFT 180) and 180° (RIGHT 180) for each vertex of a path. The
convention can be restated by saying one should use the minimum turn
necessary to align the turtle for the next segment.

Let's take a closer look at how removing a kink changes total turning.
Figure 4.3 shows an unkinking viewed as a changing turtle program.
Notice that turn A gradually decreases in a very regular manner. It is
not responsible for the change in total turning. On the other hand, B
gradually increases to LEFT 180, at which point two of the segments
cross overunkinking. Notice that it is exactly at that point that our
convention of using angles less than 180° insists we start using RIGHT.
So the sequence of changing turns throughout the unkinking process is

LEFT 179, LEFT 180 (RIGHT 180). RIGHT 179,

Hence total turning is reduced in a jump by 360°. You can see how
our convention catches the unkinking; it is a good convention. This
particular configuration, the crossing over of two segments that caused
a shift from LEFT 180 to RIGHT 180 above, is called a scissors. You can
create many interesting figures by incorporating scissors as modules in
POLYlike programs. Some of these are presented in the exercises for this
section. Though a scissors is not a deformation, it does change total
turning in a predictable way. Thus, it is a good thing to look for as you
try to understand changing paths.

In summary: We've made progress in understanding deformations of
closed paths by representing them in terms of FORWARD, LEFT, and RIGHT
turtle commands. We can regard a deformation as a sequence of small
changes to the turtle program (see exercise 14).

4.1.3 Topological Classification of Closed Paths

We've been discussing curves that can be deformed into one another-
curves that are "the same" as far as topology is concerned. Such curves

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Deformations of Closed Paths 167

are said to have the same topological type. We've also seen that total
turning is a topological invariant for closed paths. Any two closed paths
of the same topological type must have the same total turning. It is
natural to ask whether the converse is true: If two paths have the
same total turning, does that mean that they can be deformed into one
another? This is indeed the case, as was first proved in 1936 by H.
Whitney and W. C. Graustein.

Whitney-Graustein Theorem Two closed paths in the plane can be deformed
into one another if and only if they have the same total turning.

We won't give a proof of the Whitney-Graustein theorem, but you
should note that it is another example of a classification theorem, like the
classification of looping programs given in subsection 1.3.3. We saw there
that all the information about the symmetry or boundedness of a looping
program is contained in one number: the heading change in the basic
loop. We can express this by saying that heading change completely
determines the "symmetry type" of a looping program. Similarly, the
Whitney-Graustein theorem tells us that the topological type of a closed
path is completely determined by the total turning. As an interesting
exercise, you might think about the relation between topological type
and crossing points. The overlap phenomenon shows that deformations
do not preserve the number of crossing points, and hence one cannot
simply count crossing points to determine topological type. But there is
a relationship, which is developed in exercises 15-18.

Exercises for Section 4.1

1. [P] A scissors is a good dynamic building block to incorporate in a
turtle program.

TO SCISSOR (DISTANCE, PHASE)

RIGHT PHASE

FORWARD DISTANCE

LEFT 2 * PHASE

FORWARD DISTANCE

RIGHT PHASE

Angular state transparency and symmetrical "scissor action" are ensured
by the arrangement ofFORWARDs and turns. Start with an ordinary POLY

and replace the FORWARD with a scissors:

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

168 Topology of Turtle Paths

TO SCISSOR.POLY (D, A, PHASE)

TOTAL. TURNING - O

REPEAT

SCISSOR (D, PHASE)

LEFT A

TOTAL.TURNING - TOTAL.TURNING + A

UNTIL REMAINDER (TOTAL.TURNING, 360) = O

Watch how SCISSOR. POLY deforms as the phase of the scissor changes
(figure 4.4):

TO DEFORM.SCISSOR.POLY (D, A, PHASECHANGE)

PHASE # O

REPEAT FOREVER

CLEARSCREEN

SCISSOR.POLY (D, A, PHASE)

PHASE - PHASE + PHASECHANGE

Study programs like this with respect to symmetry, topological type,
and change in topological type.

[P] In the above program the phases of all the SCISSOR parts of the
SCISSOR. POLY are the same; they all close and open at the same time.
This need not be the case. For example:

TO SCISSOR.POLY (D, A, LOCAL.PHASECHANGE)

LOCAL.PHASE i- O

REPEAT FOREVER

SCISSOR (D, LOCAL.PHASE)

LEFT A

LOCAL . PHASE - LOCAL . PHASE + LOCAL. PHASECHANGE

Show that this program always closes. Invent a stop rule for it. Study
these figures, particularly when LOCAL. PHASECHANGE and A are simply
related. [H]

[P] The local phase-changing SCISSOR. POLY of exercise 2 (with stop
rule) can be used just as in exercise i to produce a sequence of gradually
changing figures by incrementing the initial phase at which each figure
starts (use LOCAL . PHASE - PHASE instead of LOCAL . PHASE + O in the
SCISSOR.POLY; then DEFORM.SCISSOR.POLY runs through a sequence of
SCISSOR . POLYs as PHASE is incremented). Study these figures.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

PHASE = 120

Figure 4.4

A deforming SCISSOR.POLY, A = 144.

PHASE = 140

PHASE = O PHASE = 20 PHASE = 40

PHASE 60 PHASE 80 PHASE 100

Deformations of Closed Paths 169

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

110 Topology of Turtle Paths

[P) Suppose one alternates inward and outward SCISSORs as follows:

TO SCISSOR.POLY (D, A, LOCAL.PHASECHANGE)

LOCAL.P}IASE i- O

REPEAT FOREVER

SCISSOR (D, LOCAL.PHASE)

LEFT A

LOCAL.PHASE - (LOCAL.PHASE + LOCAL.PHASECHANGE)

Study this program and the analogous DEFORM version (as in exercise 3).

[P) In addition to the scissor process, one can use segment disap-
pearance as a dynamic building block:

TO S}IRINKSEG (D, AMOUNT)

FORWARD D * COS(AMOUNT)

The segment disappears at AMOUNT = 90. This is relatively uninteresting
in POLY unless one changes the PHASE of the SHRINKSEG5:

TO SHRINKPOLY (D, A, LOCAL.PHASECHANGE)

LOCAL . PHASE i- O

REPEAT FOREVER

SHRINKSEG (D, LOCAL . PHASE)

LEFT A

LOCAL . PHASE # LOCAL . PHASE + LOCAL . PHASECHANGE

Figure 4.5 shows how a SHRINKPOLY varies as LOCAL. PHASECHANGE

varies. Study these figures with respect to closing, stop rules, etc. Embed
SHRINKPOLYs (with stop rule) into a continuously changing family as
we did with phase-changing SCISSOR.POLYs, and study how the the
topological types vary.

Exercises 6-13 discuss a project for making the computer automati-
cally generate deformations of closed paths. The idea is to start with
two different figures (turtle programs) and to try to find a gradual
"interpolation" from one to the other.

[P) Suppose we have two turtle paths, each given as a sequence of
pairs

FORWARD SOMEDISTANCE

LEFT SOMEANGLE

and suppose, for simplicity, that there are the same number of FORWARD,
LEFT pairs in each path. Write a program that "interpolates" one path

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Deformations of Closed Paths 171

LOCAL. PHASECHANGE = 30

LOCAL. PHASECHANGE = 60

Figure 4.5

SHRINKPOLY, A = 45.

LOCAL. PJ{ASECHANGE = 40

LOCAL.PHASECHANGE = 120
(3 X size)

LOCAL. PHASECHANGE = O LOCAL. PRASECHANGE = 20

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

172 Topology of Turtle Paths

to the other by slowly varying each of the distances and angles from its
value in the first path to its value in the second. For example, use

DISTANCE - N*DISTANCE2 + (1 - N)*DISTANCE1

as N goes from O to 1.

[P] If the initial turtle paths have a different number of pairs, you
will want to modify them to have the same number. One way to do
this is to add FORWARD O, LEFT O pairs to the shorter one, but this is
unsymmetrical if done just at the end of the program. A better way is to
"expand" both programs to a length which is the least common multiple
of the lengths of the original programs. Then we can do the expansion
uniformly through the program. For example, if an expansion by 3 is
necessary, then FORWARD D should be replaced by FORWARD D/2, LEFT O,

FORWARD D/2, and LEFT A should be replaced by LEFT A/2, FORWARD O,

LEFT A/2. Experiment with "expansion" techniques until you have one
that satisfies you and works in all instances.

[P] Show, by example, that this kind of interpolation has a problem:
Even if the two original paths are closed, the intermediate paths need not
be closed. However, if your expansion technique is uniform (symmetrical)
enough, and if the two original paths are closed POLYs with the same
total turning, then the intermediate paths will be closed.

[P] Find a way to fix up the intermediate paths so that they will
be closed. (For instance, you could compute, for each intermediate
path, the vector by which it misses closing, and distribute this in small
pieces among the vertices of the path.) Add this modification to the
interpolation program. Show how this modification can introduce kinks.

[P] Try the modified program (exercise 9) on lots of examples. Notice
that if the two original paths do not have the same total turning, the
interpolation must produce kinks. But suppose the paths do have the
same total turning. Can you be sure (or modify the program to make
sure) that the interpolation won't produce any kinks and therefore will
give a valid deformation?

[P] Rather than starting the interpolation process at the first of the
original paths and stopping at the other one, why not let the variations
continue beyond the second path (corresponding to taking N > i in the
formula in exercise 6), thus extrapolating to get some new figures? Or
run the interpolation backwards, finding figures "before" the first path
(this corresponds to taking N < 0). See figure 4.6 for examples.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Deformations of Closed Paths 173

SO
N1- _4

Figure 4.6
Interpolations and extrapolations based on a square and a circle.

[P] So far these interpolations have been based on interpolating
inputs to turtle commands. If we think of a path as a sequence of vectors,
other interpolation schemes come to mind. If VECTOR1 is to be changed
into VECTOR2, then one might interpolate using INT(VECTOR1, VECTOR2)

where INT is the same "linear interpolation" function we used with
number inputs above (exercise 6), but using vector addition and scalar
multiplication:

TO INT (START. END)

RETURN N*END + (1 - N)*START

Experiment with such schemes. Is intermediate state closure ensured,
or can you patch it up? Does the scheme kink?

[P] Think of and experiment with other methods of interpolation.
For instance, alternate commands from the two programs and continue
looping in each program (if necessary) until you are simultaneously done

N = -2 N -1

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

START

Figure 4.7
A crossing point can be regarded as a position that the turtle passes through twice.
By comparing the turtle's heading the first time it passes through the point with its
heading the second time (seeing whether it is facing more to the right or more to the
left) one can assign to the crossing point a sense of "right-handed" or "left-handed."
The "handedness" of a crossing point depends, not only on the curve, but also on
where the turtle starts traversing the curve.

with both programs. Now slowly "turn on" the distances and/or angles
of one while you "turn off' the other. Investigate closure and kinking in
the intermediate figures.

[D] Suppose we have a closed turtle path, specified as a sequence of
FORWARD and LEFT instructions. Give definitions of "small change" and
"deformation" in terms of allowable changes to the inputs for FORWARD

and LEFT. [H]

Exercises 15-17 ask you to deduce a formula, originated by Whitney,
that relates the crossing points of a curve to the total turning.

A closed curve has exactly one crossing point. What are the possible
values for its total turning? How about two crossing points? Or three?
[A]

At each crossing point of a closed curve there are two arcs. Suppose
we know which of the two arcs the turtle traveled along first. Show that
this allows us to define two kinds of crossing points "right-handed"
and "left-handed." Show that whether a crossing point is right- or left-
handed depends on where the turtle starts drawing the path. (Consider
an inside loop, as in figure 4.7.) Invent some simple way to make "right-
handed" and "left-handed" unambiguous. [A]

[D] Show that if we know the number of left-handed crossings and
the number of right-handed crossings of a curve, then there are only two
possible values for the total turning. Moreover, the total turning will be

174 Topology of Turtle Paths

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Local and Global Information 175

completely determined if we add one piece of information. What is this
piece of information? Give a formula for total turning. [HA]

4.2 Local and Global Information

We turn now to the other theorem of subsection 1.2.1, the simple-closed-
path theorem, which describes the total turning around a simple closed
path (a path with no crossing points). Recall that we stated the theorem,
but did not provide a proof.

Simple-Closed-Path Theorem The total turning in any simple closed
path is equal to +3600 (or +27r if we measure angles in radians).

This theorem is deeper than the closed-path theorem, and its proof is
considerably more complicated. The reason that we say the theorem is
deep is because it forms a link between local and global information. In
the case at hand, remember that crossing points of a curve are nonlocal
phenomenathere is no way for the turtle to sense a crossing point as it
is walking. Sensing a crossing point requires stepping back and looking
at the entire curve at once. But total turning is locally computable, and
the theorem relates total turning to the existence of crossing points.

The following is an example of the link between local and global
contained in the theorem: Suppose that the turtle walks around a closed
path accumulating total turning, and that when it completes the path it
finds that the total turning is not equal to +360°. Then the turtle can
assert that somewhere the path must have at least one crossing point.
The turtle doesn't know where the crossing point is, and was unable
to observe it while traversing the path. Nevertheless, by applying the
theorem one can deduce that a crossing point must exist.

Seen in this light the simple-closed-path theorem is an instance of a
powerful principle:

The Local-Global Principle One can often determine global properties
by accumulating local information.

We've already seen other examples of this principle in action. The POLY
closing theorem (subsection 1.2.2) predicts closing, which is a global
property of a path, from a sum of turnings, which are local information.
In chapter 2 we saw animals navigating toward some global goal, like
the warmest or wettest place, using a feedback mechanism based only

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

176 Topology of Turtle Paths

F

L_/__R

Figure 4,8
(a) Turtle with touch sensors. (b) Using touch sensors to follow along a wall.

on local measurements of the surroundings. Later on, we'll see how the
local-global principle applies to the study of surfaces.

As we said above, the proof of the simple-closed-path theorem is more
involved than those of the other theorems we have dealt with so far.
In fact, we'll delay discussing the proof until section 4.3, where we'll
describe how this theorem relates to some other results in the topology
of curves. For now, we'll turn to an application of the theorem in a
particularly nice example of the local-global principle: teaching the turtle
to escape from a maze.

4.2.1 Escaping From a Maze

Suppose that the turtle is equipped with touch sensorsone in front,
one in back, and one on each side (figure 4.8a)which allow it to detect
whether it is bumping against an obstacle. (You may want to simulate
this on the display screen. See exercise i below.) In writing programs for
this "touch turtle" we can imagine that the set of basic turtle commands
includes FRONT. TOUCH, LEFT. TOUCH, and RIGHT . TOUCH, operations which

register TRUE or FALSE according to whether the corresponding touch
sensor is activated. Using these commands it is not difficult to write a
procedure, FOLLOW, that causes the turtle to follow along a wall, say,
keeping the wall to the right (see figure 4.8b). Writing the FOLLOW
procedure is left as an exercise (see exercise 2).

Now, can the turtle use this new ability to circumvent any obstacle
in its path by FOLLOWing the obstacle around to the other side? An
arbitrary obstacle might be very complicated. In fact, the ability to get
around any obstacle would entail the ability to escape from any maze.
What we are asking for is a universal maze-solving algorithm.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Local and Global Information 177

Here is a first attempt at such an algorithm. The idea is to keep the
turtle heading in a preferred direction, say "north," whenever you can,
and whenever the turtle hits an obstacle, to have it walk around the
obstacle until it can walk freely again.

Maze Algorithm 1:

Select an arbitrary initial direction, call it "north," and face that
way.

Walk straight "northward" until you hit an obstacle.

Turn left until the obstacle is to your right.

Follow the obstacle around, keeping it on your right, until you are
once again facing "northward."

Go back to step 2.

Notice that the turtle can determine when it has completed step 4 by
keeping track of total turning. As soon as the total turning in following
the wall (including the initial turn in step 3) is an integer multiple of
3600, the turtle knows that it is once again facing "north." Figure 4.9a
illustrates the algorithm in action.

But this procedure does not work in general. Figure 4.9b shows how
the turtle can become trapped. The turtle can be fooled into thinking
that it has gotten around an obstacle while in fact it ends up traveling
in a loop forever.

It is remarkable that a simple modification to maze algorithm i will
avoid not only the trap in figure 4.9b, but also any other trapit will
produce a universal maze-solving algorithm. The modification is in step
4: The turtle should follow the obstacle, not until the total turning is a
multiple of 360°, but until the total turning is exactly equal to zero. This
procedure is the Pledge algorithm, named for John Pledge of Exeter,
England, who at age 12 developed this method for navigating the turtle
through mazes.

Pledge Algorithm

Select an arbitrary initial direction, call it "north," and face that
way.

Walk straight "northward" until you hit an obstacle.

Turn left until that obstacle is on your right.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

178 Topology of Turtle Paths

p
--

Figure 4.9
(a) Maze algorithm lin action. (b) A trap for maze algorithm 1. The turtle will loop
forever, trying to head "north." (c) The Pledge algorithm allows the turtle to get
out of the trap, by keeping track of total turning.

(a) (b)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Local and Global Information 179

Follow the obstacle around, keeping it on your right, until the total
turning (including the initial turn in step 3) is equal to zero.

Go back to step 2.

Figure 4.9c shows how the Pledge algorithm gets the turtle out of
the trap. The reason why the algorithm works is intimately related to
the simple-closed-path theorem. The idea is to suppose that the turtle
gets trapped in a ioop, going round and round the same path. Then
we can show that the path has two mutually incompatible properties: It
can be deformed into a simple closed curve, and yet the total turning
around the path is zero. These two things together would contradict
the simple-closed-path theorem. Thus we conclude that the algorithm
cannot fall into a loop, and so the turtle cannot get trapped. Of course,
many details must be filled in to turn this sketch into a proof. We will
give a full proof in section 4.4.

Try the Pledge algorithm on a few mazes and observe how it gets the
turtle out of traps. Remember that the driving force behind this algo-
rithm is another application of the local-global principle: By observing
local information (total turning) the turtle can be assured of fulfilling
some global criterion (not getting trapped in a loop).

Exercises for Section 4.2

[P] Implement a "touch turtle" on the computer display. Your turtle
should have the ability to sense when it is about to cross a previously
drawn line. Your task can be made easier if you restrict the lines to be
vertical and horizontal. Alternatively, take a look at subsection 6.2.3,
which explains how to compute the intersection of two lines. A way
to implement the touch turtle without computing any intersections is
to divide the display screen into a large number of small squares and
construct "obstacles" out of square bricks. Then the turtle is not allowed
to move into a square already occupied by an obstacle.

[P] Use your touch turtle to implement the FOLLOW procedure dis-
cussed in the text. Do you see how to use a feedback mechanism to
ensure that the program will work even if the turtle's sensors are slightly
inaccurate?

[P] Implement the Pledge algorithm and try it out on some mazes.
Also try some other maze algorithms (such as algorithm 1) and construct
mazes that serve as "traps" for the algorithms.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

180 Topology of Turtle Paths

4.3 Deformations of Curves and Planes

The purpose of this section is to provide proofs of the simple-closed-path
theorem and some related theorems about the topology of simple closed
curves. Recall that we want to show that, if we have a simple closed
path (a path with no crossing points), then the total turning around the
path is equal to +360°. There are many paths for which this result
is obvious; perhaps the simplest is a square. This suggests a strategy
for proving the theorem: Try to show that any simple closed path can
be deformed to a square. Since we know that total turning is invariant
under deformations, we will therefore have shown that any simple closed
path has the same total turning as a square: ±360°, depending on which
direction the turtle goes around the square. This reduces the problem
of proving the simple-closed-path theorem to showing that any simple
closed curve can be deformed to a square. In fact, we're going to prove
something a bit better: Given any simple closed path, not only can the
path itself be deformed to a square, but we can imagine the deformation
being done in a very special way; the entire plane can be deformed,
pulled and stretched, so that the path becomes a square.

The difference between the two notions of deformationdeformation
of a path versus deformation of the planerequires some explanation.
Until now we've been talking about deformations of paths. We focused
on a turtle walking around a closed path, and imagined how the path
would change as we made small modifications to the turtle's program.
But we can also consider deformations of the plane. Imagine that the
plane is an arbitrarily stretchable rubber sheet. Then any kind of
stretching or shrinking (but not cutting or tearing) can be viewed as
a deformation.

These two kinds of deformation are closely related. In particular, if we
draw a closed path on the "rubber sheet" plane, then any deformation
of the plane will give rise to a deformation of the path. (See figure
4.lOa and imagine for the moment that the rubber sheet is stretched
over a fiat surface so that it remains fiat.) Of course, straight turtle
segments may become curvy under such a deformation, and that may
require us to use an "approximate program" (as POLY with small inputs
approximates a circle). But if you can tolerate such approximate curves,
then a deformation of a plane always bends a turtle path drawn on it
gently enough so the new path is a turtle-program deformation of the
original. On the other hand, many of the changes that are legitimate for
deformations of curves, such as the innocuous overlap phenomenon we
met in 4.1.1, cannot happen with plane deformation. In general, crossing

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Deformations of Curves and Planes 181

J4riuu

(a)

(b)

Figure 4.10
(a) A rubber-sheet deformation of the plane yields a deformation of any curve drawn
on the plane. (b) A rubber-sheet deformation preserves crossing points.

points can be neither created nor destroyed during plane deformation
(see figure 4.lOb).

In summary: Plane deformations are "gentler" than path deforma-
tions; every plane deformation is a path deformation, but path defor-
mations that introduce crossovers are too violent to be plane deforma-
tions. Incidentally, if you were suspicious about admitting the crossover
phenomena as valid deformations of curves, it's probably because you
had the rubber-sheet rather than the turtle-program model of deforma-
tion in mind. (The technical mathematical term for a turtle-path defor-
mation is regular homotopy, while a rubber-sheet deformation is called
an ambient isotopy.)

The main theorem of this section asserts that any simple closed path
can be deformed to a square, and, moreover, that this can be done with
a "gentle" deformation, that is, a plane deformation.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

182 Topology of Turtle Paths

Deformation Theorem for Simple Closed Curves For any simple closed
curve in the plane, there is a "rubber sheet" deformation of the plane
that reduces the curve to a square.

We'll give the proof of this theorem in subsection 4.3.1. As we've
already said, the simple-closed-path theorem follows as an immediate
consequence.

There is another result about the topology of simple closed paths that
also follows from the deformation theorem. This is the Jordan curve
theorem:

Jordan Curve Theorem Any simple closed curve in the plane divides the
plane into exactly two regions (an "inside" and an "outside").

This result may seem intuitively obvious, but simple closed curves can
be rather convoluted (see figure 4.11a), so we should be prepared to
justify our intuition. Also, notice that the theorem is definitely false
if we consider curves on surfaces other than the plane. For example,
the curve drawn on the torus in figure 4.11b is a simple closed curve,
and yet it does not divide the torus into two regions. We'll have more
to say about turtle paths on tori and other nonplanar surfaces in later
chapters.

Do you see how the Jordan curve theorem follows from the deforma-
tion theorem? The point is that properties such as "dividing the plane
into two pieces" and "having an inside and an outside" are invariant
under rubber-sheet deformations of the plane. Since the curve after
deformation (that is, the square) has these properties, then so must the
original curve before the deformation.

The deformation theorem implies a bit more than the Jordan curve
theorem: Not only does the curve have an inside and an outside, but
the inside itself can be deformed, in the rubber-sheet sense, to the
interior of a square. A region that can be deformed to the interior of a
square is called a topological disk (as far as rubber-sheet deformations
are concerned, a disk is as good as a square). Note that deforming a
rubber-sheet region does not require that we keep the region a part of
the flat planefigure 4.11c illustrates some topological disks of both the
planar and the nonplanar variety. In later chapters we will see that
topological disks play a key role in the study of the turtle geometry of
nonplanar surfaces.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

(e)

Figure 4.11
(a) A simple closed curve in the plane can be very convoluted, but it always has an
inside and an outside. (b) A simple closed curve on a torus that does not divide the
torus into two pieces. (e) Topological disks. The third disk is non-planar.

4.3.1 Proof of the Deformation Theorem

The aim of this section is to prove the deformation theorem by showing
how to construct, for any simple closed path in the plane, a rubber-
sheet deformation that reduces the path to a square. This proof is more
involved than the proofs we've discussed so far (it should be, since both
the simple-closed-path theorem and the Jordan curve theorem follow as
immediate consequences), and you may want to skip this section your
first time through the chapter.

The first step in the proof is to imagine that the plane is divided into
a fine grid, and that the curve is made up of grid lines, as shown in
figure 4.12. If the grid is fine enough, then we can always deform any
normal turtle path into a "grid path." In fact, you've probably been
working with grid paths all along, since most computer displays draw

Deformations of Curves and Planes 183

(a) (b)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

ll....uum-

Figure 4.12
Approximating a curve by a path on a grid.

pictures that are actually made up of dots on a very fine grid. (Many
of the difficult technical parts of topology are concerned with providing
precise mathematical definitions for such terms as "closed curve" that
are consistent with the intuition that any closed curve can be deformed
onto a suitably small grid. By considering curves to be turtle paths, we
can avoid most of these technicalities. Exercises 5-7 of this section give
more details on deforming turtle paths to lie on a grid.)

Since any turtle path can be deformed to a grid path, we need only
prove the deformation theorem for grid paths, in which all angles are
900. The basic idea of the proof is to "collapse" a simple closed curve
down to a single square of the grid. We do this by defining a process that
successively eliminates every "southwest corner" of the curve. In other
words, we take every vertex of the curve that is oriented as in figure
4.13a and push it, as shown, towards the "northeast." Notice that this
"push" can be accomplished by a rubber-sheet deformation of a small
piece of the plane surrounding the vertex (figure 4.13b).

We will prove the deformation theorem by showing two things: that
this pushing process can always be done with a simple closed curve,
and that enough successive pushes will eventually reduce the curve to
a square. Consider the first assertion. When might we not be able to
remove a southwest corner by pushing it to the northeast? The answer
is:- If the curve already passes through the new, northeast vertex we
would create by the push, then we cannot perform the pushing process,
because the resulting curve would intersect itself and hence not be a
simple closed curve.

Let's examine all the ways in which the vertex northeast to a south-
west corner can already be occupied by the curve. Since each of the two

uuuuau... au...... .uuu.u..-...................................u.........u......u...............0

184 Topology of Turtle Paths

.........................u.us.u...l.............u..................... .u...u....u......u................................au......lursuu.uuuuuu au...... .uluu.u.u .uuuuuaiauuu.rnuuuuu uu.................U.......utu.u......u..s....0 .u.u..u..................u.uU........u..u......u.UUUUUUAUUUuuuu.uuuuuuu a.....
uuuuuuuuuuu.iuuuuii ...u... uu. u.u......uuu.uauu l....u....u..IUUlrAUUIIluulu .u.uu...... l.U ...U..........ua4uuuuuuluuu.uua..............uuui...uu.u.ua.i....iuuuu................ au.....a.a.....u......................u..........a..uuuu......M... a...........uu.u......,.....

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Deformations of Curves and Planes 185

(a) i"Ii
Figure 4.13
(a) Deforming a curve by removing a "southwest" corner. (b) Pushing a southwest
vertex northeast, viewed as a rubber-sheet deformation of the plane.

r'

(b)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

186 Topology of Turtle Paths

(5) :iii - DONE (6) ?

r

Figure 4.14
The six ways that the northeast vertex can already be occupied. In all but the last
case, this causes rio problem.

segments of the curve meeting at the northeast vertex can come from
one of four directions, and the directions for the two segments must
be different, there are six different possible local configurations in all.
These are illustrated in figure 4.14, which also shows how in four of the
six cases we can easily eliminate the southwest vertex by a deformation.
Notice that in each case the required deformation can be accomplished
as a rubber-sheet deformation of the plane. The fifth case shown in
the figure can only arise if the curve is already a single square, which is
where we wish the deformation process to stop.

It is only in the sixth case, where our northeast vertex is itself occupied
by a southwest corner of another part of the curve, that we run into
trouble. We must move the curve away from the northeast vertex before
we can perform the collapse. The clearest way to do this is to first apply
the collapsing process to the northeast vertex (regarded as a southwest
corner of its own part of the curve), and then return and continue with
the original southwest corner (figure 4.15 shows an example). There is
still a problem, for it is certainly possible for this northeast square to
be blocked, in turn, by another corner to its northeast, and so on. But
this sequence of blocking northeast corners cannot go on indefinitely,
because the curve has only a finite number of vertices to begin with and

(3) L: -
s

(4)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

e/I::'..

. s .

e

s

s

s

Figure 4.15
Example of the collapsing process in action. Notice that in going from (a) to (b) we
collapse vertex B before vertex A, since B is blocking A. Also note that collapses in
(e) and (h) illustrate cases (2) and (3), respectively, of figure 4.14.

so cannot stretch infinitely far to the northeast. Thus, we can always do
the collapse if we are sure to begin collapsing each sequence of blocking
corners by starting at the most northeast end of the sequence.

To review our collapsing process: We get rid of southwest corners,
one by one. This is straightforward when the southwest corner is not
blocked to the northeast. If it is blocked, the blocking configuration is
one of those shown in figure 4.14, so we apply the deformations shown
there. In one of the cases (case 6) this may entail applying the collapsing
process recursively to the northeast corner. We can describe this process
using the format of our turtle computer language as follows:

. .

s s

. .

."s e

(g)

Deformations of Curves and Planes 187

(d) (e) (f)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

188 Topology of Turtle Paths

TO REDUCE a simple closed curve
REPEAT

FIND a southwest vertex
COLLAPSE the vertex you found

UNTIL curve is reduced to a square

TO COLLAPSE a vertex
IF vertex is not blocked

THEN apply the process shown in figure 4.13
ELSE BLOCKED. COLLAPSE the vertex

TO BLOCKED. COLLAPSE a vertex
IF in cases 1-4 of figure 4.14

THEN apply deformation shown in figure 4.14
IF in case 5 of figure 4.14

THEN curve is reduced to a square
IF in case 6 of figure 4.14

THEN

COLLAPSE the vertex to the northeast, and then
COLLAPSE the original vertex

This completes the definition of the collapsing process.
Now we must show that this process actually terminates with the curve

reduced to a single square. Do you see the problem here? In collapsing a
southwest corner we create some new southwest corners, and these must
in turn be collapsed, which might create more southwest corners, and
so on. So how can we be sure that this process doesn't go on forever?
The answer is that the process keeps squeezing the curve into smaller
and smaller pieces of the plane. Each collapsing of a vertex pushes a
piece of the curve to the north and/or east. On the other hand, if we
draw a line directly above the original curve and another line directly
to the east of the curve, we can see that the collapsing process never
moves the curve past these lines (figure 4.16). So the region occupied
by the curve gets smaller and smaller, and the process must therefore
eventually terminate. This can happen only when the curve is reduced
to a single square.

We have now completed the proof of the deformation theorem.

Exercises for Section 4.3

1. Suppose the turtle walks around the boundary of a simple closed
curve. By the Jordan curve theorem, the curve divides the plane into

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Deformations of Curves and Planes 189

Figure 4.16
The collapsing process will never push the curve beyond its northern and eastern
borders.

two regions, one lying to the turtle's left and one to the right. How can
the turtle tell which region is the inside and which is the outside of the
curve? [HA]

To test your understanding of the proof given above, can you pinpoint
exactly where the argument breaks down if we assume that the original
curve has crossing points? [A]

[D] To test your understanding of the proof given above, can you
pinpoint exactly where the argument breaks down if we assume that
the curve is drawn on some nonpianar surface, such as a torus? After
all, figure 4.11b demonstrates that the theorem must be false for such
curves. A cheap answer is to protest that we haven't said how to define
a "grid" for such curves. Assume we can do that. What is the real
problem with the proof? [HA]

[D] In a rubber-sheet deformation, any two distinct points must
remain distinct throughout the deformation, and any arc joining the
two points must be transformed to an arc joining the transformed points.
Show that this implies that a rubber-sheet deformation cannot change
the topological type of a curve drawn on the plane.

The following exercises deal with the problem of showing that any
turtle path can be deformed to lie on a grid. The key to the demonstra-
tion is estimating how fine a grid is necessary. What we want is a "safety
zone" around every part of the path such that no deformation within
the zone can run into any other part of the curve. Then if we choose
a grid size much smaller than the width of the safety zone, we can use

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

/ ri.ì.
I.'1I'iiuiiiiiiI'll'.','muiu'aMUI!Ui

(b)

(d)

qt

Figure 4.17
Deforming within "safety zone" eliminates possibility of overlaps and crossing points.
(a) Path with safety zone. (b) Grid chosen smaller than zone. (e) Deforming within
zone. (d) Deforming a curve to a grid near an acute vertex.

190 Topology of Turtle Paths

J

/

(e)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Correctness of the Pledge Algorithm 191

any sort of deforming algorithm to deform within the zone without risk
of producing crossing points (see figure 4.17ac). Consider now in detail
a simple closed turtle path with a finite number of segments:

[D] Show that, except in the case of points on adjoining segments,
points on one segment cannot be arbitrarily close to points on other
segments. That is to say, given any turtle path, show that there is some
number D > O such that for any two points p and q on nonadjacent
segments of the path, the distance from p to q is at least D. Thus, the
safety zone can be taken to have width D and there can be no overlap.
Such a D may not exist if the path has an infinite number of segments.
[HA]

[DD] Points on adjacent segments can be arbitrarily close, so the
safety zones for the two segments must overlap. Show in such an instance
that, perhaps by making the grid a bit finer, one can still deform in
safety by pushing the segments away from each other within the zone
(see figure 4.1Td). Combine this idea with the result of exercise 5 and
describe in detail a complete method for deforming a simple closed turtle
path to lie on a grid. [A]

4.4 Correctness of the Pledge Algorithm

In subsection 4.2.1 we described the Pledge algorithm for guiding a turtle
through a maze. Here we will prove that the Pledge algorithm is a
universal maze-solving algorithm (that is, one that will allow the turtle
to escape from any maze). Here is an overview of the proof:

The only way the algorithm can fail is if the turtle falls into an infinite
loop, traversing the same path over and over in a way reminiscent of
the turtle trap that defeated the first version of maze algorithm i in
subsection 4.2.1. The validity of this assumption is discussed below in
4.4.3.

The only way the turtle can end up traveling in a loop is if it winds up
following around and around the same simple closed path of wall. We
prove this in 4.4.2 by applying the simple-closed-path theorem.

The only way the turtle can be fooled into following the same simple
closed path of wall over and over again is if the mazernaker has cheated
and placed the turtle in a maze with no way out, such as that shown in
figure 4.18a. We prove this in 4.4.1.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 4.18
The maze may be unfair, with the turtle trapped inside a simple closed path of wall
with no way out. Since it keeps the wall to the right, a turtle traversing the outside
of the wall will make a net 3600 right turn and a trip around the inside of the wall
will make a net 3600 left turn.

Putting these three facts together shows that the only way the Pledge
algorithm can fail is if the maze is unfair. The rest of this section is
concerned with spelling out the details of these three steps. As with the
proof of the deformation theorem, you may want to skip this on a first
reading.

4.4.1 Unfair Mazes

We want to show that the turtle will keep following the same simple
closed path of wall only if the maze is unfair. Let's consider how the
turtle could recognize an unfair maze. An unfair maze will contain a
simple closed path of wall that seals the turtle in. But the presence of
a simple closed path of wall does not necessarily mean that a maze is
unfairthe turtle may be stupidly walking around the outside of the
wall. Our first task will be to show that the algorithm is not that
stupidthat if the turtle keeps retracing a simple closed path of wall
then it really is trapped on the inside. To show this, recall that the turtle
does its walhfollowing keeping the wall to the right. Then, as figure
4.lSb shows, a trip around the outside of a wall will be a net 3600 right
turn for the turtle whereas a trip around the inside of a wall will be a net
360° left turn. Now imagine that the turtle has a counter that registers
the accumulated total turning while following a wall. Left turns cause
the count to increase and right turns cause it to decrease. So a right-
turn (outside) loop will subtract 3600 from the count, and for a turtle
trapped following an outside loop forever, the count would keep getting
smaller and smaller. On the other hand, the counter registering zero is

192 Topology of Turtle Paths

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Correctness of the Pledge Algorithm 193

precisely the signal for the turtle to stop following the wall and start
heading northward again (step 4 of the algorithm), so the turtle will not
run forever in an outside ioop. So if the turtle does run forever around
a simple closed path of wall, it must indeed be sealed inside an unfair
maze.

4.4.2 The Body of the Proof

Here we will establish the second point in the proof outline given at the
beginning of this section: If the turtle runs in a loop, that ioop must
be a simple closed path of wall. The structure of the Pledge algorithm
reveals that the turtle's wanderings can be divided into two kinds: "free
running" (traveling north without contacting a wall), and following a
wall. We will first prove that if the turtle does fall into a loop then it
traces a path that can be deformed to a simple closed path. We will
then prove that any closed path containing both "free running" and
"wall following" sections must have zero total turning and hence (by
the simple-closed-path theorem) be unamenable to such deformations.
Together these assertions show that if the turtle does ioop, then the
repeated part of the path must consist only of "wall following" parts
(a loop clearly cannot consist of all northward-pointing "free running"
parts) and hence the turtle is tracing a simple closed path of wall.

Suppose that the turtle retraces the same closed path over and over.
By considering all the ways this closed path can touch itself, we will
show that the path can be deformed to a simple closed curve. One way
the path might touch itself would be for the turtle to "free run" more
than once along the same northward line segment at different times in
the same loop, as shown in figure 4.19a. We leave it to you (exercise 1)
to prove that this can never happen.

The only other wáy the path can overlap itself is in the situation
shown in figure 4.19b: The turtle, while running northward, bumps
against a wall it has already followed, or else starts following a wall it
has previously bumped against (it doesn't matter which happened first,
the bumping or the following, since we're assuming that the turtle is in
a loop and will be doing one and then the other over and over).

Let's take a closer look at this situation. Let A be the part of the path
corresponding to the time the turtle followed along the obstacle, and let
B be the part of the path that has just bumped against the obstacle
while running northward. We would like to deform the turtle's path to
eliminate the overlap. Whether or not we can do this depends on where
A and B leave the obstacle.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

194 Topology of Turtle Paths

-A-

L

(a) (b)

Figure 4.19
(a) Example of how the turtle'8 looping path might cover the same northward segment
twice. (In fact, this cannot happen.) (b) Sample intersection in the path: The turtle,
while running north, bumps against a wall it has previously followed,

If B leaves the wall before A (as in figure 4.20a) there is no problem;
we simply deform the path as shown. If A leaves the obstacle first, as in
figure 4.20b, there is no obvious way to deform the path to eliminate the
overlap. We claim that this troublesome situation will never arise. To
see this, think about the counter that the turtle is using to accumulate
total turning. Examine the counter at corresponding points of A and
B, at a point shortly after B reaches the obstacle and the turtle has
turned left to face along it (see figure 4.20c). On B the counter registers
some angle O between 00 and 1800, depending on how much the turtle
had to turn in order to begin following the wall. How about the counter
on A? Since at that point the turtle's heading is the same as at the
corresponding point on B, the count must equal O plus some integer
multiple of 360°. Furthermore, the integer cannot be negative, since
that would make for a negative accumulated total turning, which is not
possible with the Pledge algorithm. So the A count must be greater
than or equal to the B count, and both are greater than zero. Now, in
continuing to follow along the object, both the A and the B count will

-A-

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Correctness of the Pledge Algorithm 19

B

f8

B

4

B counter 8

A counter >9

4

B

(e) (d)

IB

B

4

Figure 4.20
(a) If B leaves the obstacle before A, then a simple deformation removes the inter-
section. (b) If B leaves after A, then there is still an intersection after deforming. (c)
Compare the total turning count for A and B at a point just after the overlap. (d)
A and B might conceivably also leave the obstacle together.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

196 Topology of Turtle Paths

be reduced (or increased) by the same amount. So the A counter cannot
reach zero before the B counter does. Thus, A must continue to run
along the obstacle longer than B does.

We should also consider the possibility that A and B leave the wall
at the same place (figure 4.20d)that is, start with equal turning in-
dicators. But this is a particular case of the turtle beginning to follow
the same northward line twice, and we've already said that such a thing
cannot happen.

In summary: We've shown that of the three situations shown in figure
4.20 (a, b, and d), only the first is possible, and in this case we can
deform the path to eliminate the overlap. Thus we have shown that if
the turtle does get into a loop, the path can be deformed to a simple
closed curve.

Suppose now that the turtle retraces the same closed path over and
over, and that this path contains both "free running" and "wall follow-
ing" sections. Such a path must have zero total turning. Certainly the
"free" sections have zero total turning, since the turtle is simply running
northward there. But, as step 4 of the algorithm shows, any completed
"following" section must have zero total turning as well. Hence, the en-
tire path has zero total turning, and, by the simple-closed-path theorem,
cannot be deformed to a simple closed curve.

We have proved our two assertions; that is, we have shown that if the
turtle runs in a ioop it must be running around a simple closed path of
wall.

4.4.3 Looping and Finite-State Processes

To tie up all the loose ends, we must discuss the first point in the proof
outline given at the beginning of section 4.4that the only way the
algorithm can fail is by going into a loop, driving the turtle in the same
path over and over. The reasoning we will use here is an instance of a
very general principle, the concept of a finite-state process. The point
is this: If we are watching the turtle wander through a maze following
the Pledge algorithm, then we can predict what the turtle will do next,
provided that we know three things: the turtle's position, the turtle's
heading, and the accumulated total turning registered in the turtle's
counter. These three pieces of informationposition, heading, count-
give a complete description of the state of the process as far as the Pledge
algorithm is concerned; at any instant the turtle's entire future path in
the maze is determined solely by this threefold state. So if we want to
show that the algorithm falls into a loop we need only show that there is

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Correctness of the Pledge Algorithm 191

some state that the turtle reaches more than once. Consider: The turtle
proceeds from some state and eventually comes back to the same state.
So, proceeding once more from this state, the turtle must do the same
thing that it did the first time, which brings it back to the same state
again, and so on, and so on. (Compare this reasoning with the argument
used in the proof of the POLY closing theorem in subsection 1.2.3.)

Let's assume that the Pledge algorithm fails for some mazethe turtle
wanders around forever without ever getting out. How can we show
that there is a loop, or, equivalently, how can we show that there must
necessarily be some state that the turtle reaches more than once? The
key idea is this: Suppose we could show that there are only a finite
number of different states that the turtle can be in. Then, since we are
assuming that the turtle wanders around forever, there must be some
state that is entered more than once.

So we are reduced to showing that there are only a finite number
of statesposition, heading, countthat the turtle can be in while
following the Pledge algorithm. Unfortunately, there are situations
where this is not true. For example, if the maze has infinitely many
walls, then the number of possible turtle positions, and hence the number
of states, will surely be infinite. In fact, our entire proof breaks down
for infinite mazes.

Let's retreat, then, from such infinities, and restrict our attention to
finite mazessay, a maze that has a finite number of straight walls and
is entirely contained within some bounded region of the plane. Even in
these cases, it appears that there can be an infinite number of different
states. There are an infinite number of possible positions (points) in
the region, the heading can be any angle, and the count can be any
non-negative number. So we need to be more subtle, and consider not
all possible different states but rather all possible "effectively different"
states (states whose difference actually affects what the algorithm will
do next).

Even though there are infinitely many different positions the turtle can
be at, we can lump together in a single state sequences of positions (all
with the same heading and total turning) that always occur together,
such as all points along the same section of wall or along the same
segment of some "northward" line between obstacles. With this proviso,
the number of effectively different positions is finite so long as the maze
has a finite number of segments. We can make a similar remark for
heading: The number of different headings cannot be more than the
number of different segments in the maze, plus one (to allow for a
northward heading).

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

198 Topology of Turtle Paths

Figure 4.21
Will the turtle get lost in an infinite spiral?

If we restrict all angles to be integers, then there are only a finite
number of possibilities for the count part of the state, as well. This is
because the count cannot become arbitrarily large. To see this, observe
that, each time the turtle finishes following a wall, the counter registers
zero total turning. So consider the largest total turning that the turtle
can accumulate while performing the "following" phase of the algorithm,
without retracing the path. (This maximum turning must be less than
the total number of wall segments in the maze times the maximum
possible turn, 1800.) If the turtle's count becomes larger than this
number, it must have followed a wall all the way around and begun
retracing its path. But, as noted in 4.4.1, the turtle can be fooled into
following all the way around a closed path of wall only if the maze was
unfair to begin with. Thus, for any fair maze, the possible values of the
total turning counter are bounded.

In summary: We have shown that for any finite and fair maze there
are only a finite number of effectively different states. Hence, if the
turtle wanders around forever it must get into a loop. This is the final
assumption we needed to check, so we have completed the proof that
the Pledge algorithm is a universal maze-solving algorithm.

Exercises for Section 4.4

Fill in the part of the proof we left out in subsection 4.4.2: that
through one round of the looping path the turtle cannot run along the
same northward segment twice. [HA]

[D] Suppose the turtle is dropped into an infinite spiral maze (figure
4.21). If the turtle is idealized as a point, the Pledge algorithm will take

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Correctness of the Pledge Algorithm 199

an infinite number of stepswinding in and in and in, then out and out
and outif it is to succeed at all. Even if we allow an infinite number
of steps, what happens in such a situation? Can spirals have infinite
length, infinite total turning? Do these doom the Pledge algorithm? [Hl

3. [D] Suppose a maze is really made up of curved lines rather than a
finite number of line segments. Show that in a wide range of situations
the number of effectively different states is still finite. Be as explicit as
you can in defining and enumerating the effective states and in specifying
the conditions under which you can be sure the number of effectively
different states is finite. Do circles meet those criteria? Do spirals?

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Turtle Escapes the Plane

"But how do I get there?" asked Boots. "That's
easy," the old man replied. "Just put one foot
before the other and follow your nose."

fairy tale

We have seen how turtle geometry, with its emphasis on procedural
descriptions and local methods, can be a useful alternative to Euclidean
axioms and Cartesian coordinates in exploring plane geometry. Now
it's time to leave Euclid behind and consider what life is like for a turtle
crawling on a curved surface. The branch of mathematics that deals with
the geometry of curved surfaces is known as differential geometry, and
this chapter presents a turtle's-eye view of some of the basic concepts in
this subject.

We'll begin our survey of turtle geometry on curved surfaces with a
discovery: For a turtle on a sphere, the closed-path theoremthat the
total turning around any closed curve must be an integer multiple of
360°is false. You may well ask how we can hope to gain any benefit
from turtle geometry without the closed-path theorem. After all, the
theorem is one of the cornerstones of the work we've done so far. It
formed the basis for the symmetry analysis of looping programs, not to
mention the entire topological classification of closed curves which we
discussed in chapter 4. But instead of throwing up our hands in despair,
we'll take a close look at some turtle paths in order to get to the nub of
how it can be that this basic theorem doesn't hold. And a very rewarding
nub it is. In fact, we shall see that the breakdown of the closed-path
theorem is, in a sense, the very essence of what it means for a surface
to be curved. Pursuing this idea, we'll give a definition of curvature
that satisfies the turtle criteria of being local and intrinsic. We'll also
introduce the total curvature of a surface, a topological invariant that
plays a role analogous to that of the total turning for curves in the plane.

5.1 Turtle Geometry on a Sphere

Imagine that a turtle is crawling on a spherethe earth's surface, for
example. Suppose the turtle walks around the closed path shown in
figure 5.1. Starting at the equator and facing north, the turtle goes

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 5.1
A 3 X 900 triangle on a sphere.

straight north until it reaches the north pole. There it turns 90° and
goes straight south until it gets to the equator. Again it turns 90° and
runs along the equator to get back to its initial position, where a final 90°
turn restores the initial heading. That's certainly a closed path, but the
total turning is 3 X 90°, or 270° in all. This contradicts the closed-path
theorem (subsection 1.2.1), which says that the total turning should be
an integer multiple of 360°. Even worse, it's easy to see that on a sphere
there can be closed paths with any amount of turning whatsoever: Start
the turtle at the equator walking north as before. This time, when the
turtle reaches the north pole, have it turn some arbitrary angle 9, then
march south to the equator, then back along the equator to the initial
position, and turn as before to restore the initial heading. The total
turning for this trip is 180° + 9, so by varying O we can produce arbitrary
total turning. Try this on a globe.

This should bother you a fair amount. After all, the proof we gave
of the closed-path theorem in subsection 1.2.1 was very straightforward
and made no explicit mention of the fact that the turtle was walking on
a plane. So how can it break down so badly as soon as we put the turtle
on a sphere? Of course, you might think we are being overly naïve in
expecting our planar turtle theorems to carry over to the sphere. The
turtle is walking on a curved surface, the sphere, and surely this must
have something to do with turning. Is it fair even to regard these turtle
paths as made up of straight lines?

5.1.1 Turtle Lines

Let's begin with that last question: What is a straight line for a turtle
on a sphere? When the turtle walked along the equator, we said that it
was walking straight Can we give some justification for regarding the
equator as a sphere's version of a straight line?

202 Turtle Escapes the Plane

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Turtle Geometry on a Sphere 203

First of all, the lines we're talking about are not straight in Euclid's
sense: They don't lie in a plane. To save confusion let's refer to this
kind of straight line as a turtle line. Because we've shifted our attention
from the abstraction of "straightness" to crawling turtles, it's natural
to try to define a turtle line as the path followed by a turtle that walks
along the surface without turning. Of course, this is progress only if we
can say what we mean by "without turning." In other words, how can
the turtle know how to walk straight?

Suggestion i Turtle cannot possibly walk straight on a curved surface,
and we shouldn't waste time trying to make sense of such a notion.

Suggestion 2 Indeed the turtle can't really walk straight if it's restricted
to the sphere's surface. In order to really walk straight the turtle has
to walk in a plane. But the next best thing may be good enough: The
turtle can walk along the intersection of the sphere with a plane. We
should therefore define a turtle line on a sphere to be the intersection
of the sphere with a plane. According to this definition, the equator is
a turtle line. So is any great circle, and any line of latitude. (Do you
agree that these should all count as turtle lines?)

Suggestion 3 One thing we expect about a straight line segment is that it
should be the shortest distance between its two endpoints. So we should
admit as turtle lines only those paths that give the shortest distance
between their endpoints. By this definition it is not hard to see (although
it's hard to prove) that any turtle line must be part of a great circle.
Latitudes other than the equator don't satisfy the criterion.

Suggestions 2 and 3 are reasonable, but they have a serious shortcom-
ing: They are not local. That is, they are not phrased in such a way
that the turtle can tell if it's walking straight as it is walking. Consider
suggestion 2. The turtle would have to stand back, move off the sphere
altogether, and look at the intersection of the path with a plane before
it could be sure that it was walking straight. Suggestion 3, based on
shortest distance, is at least intrinsic; it allows the turtle to remain on
the sphere. But the definition still isn't local. In order to be sure of
walking in a turtle line between two points, the poor turtle would have
to measure every possible path between the two points and then pick
the shortest.

There's something wrong here. "Walking straight without turning"
seems like a simple idea. The turtle should be able to tell that it is

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 5.2
Is the line of latitude an equal-strided turtle walk?

walking straight as it is walking, without getting off the sphere to look
for planes or finding all possible paths between two points. Can't we find
such a local definition? After all, couldn't you walk without turning on
a sphere (the earth)?

Here's an idea: Imagine the turtle's legs churning away. We'll say that
the turtle is going straight if its left legs take the same number of steps,
of the same length, as its right legs. If the turtle starts taking shorter
steps on one side (or even backward steps), it will turn. This leads to
the following definition:

A (turtle) line is an equal-strided turtle walk.

Now, is any latitude a turtle line? If the turtle straddles a (northern
hemisphere) latitude and starts walking, its "south" legs travel a bit
below the latitude and its "north" legs a bit above (figure 5.2). Marching
all the way around the sphere, has the turtle taken the same-size steps
with north as with south legs? Of course not. The farther north the
latitude, the smaller the round-trip path. Take a look at a globe again.
The equator is the longest latitude, and as you get closer and closer to
the north pole the latitudes get smaller and smaller and eventually reach
zero length at the north pole. So the turtle must take different-size steps
with its left and right legs, and therefore a nonequator latitude is not a
turtle line. Equators and longitudes, on the other hand, are turtle lines.
(Stare at a globe if you're not convinced.)

There are some interesting points to notice about this way of looking
at "straight" turtle lines. First of all, the definition can be used on any
surface, not only planes or spheres. Any bent-up surface will do. Just
set the turtle down and have it take even strides, left and right, and
it will walk in a turtle line. Second, this idea of "even strides," and
therefore the determination of what is "straight," reduces to measuring

204 Turtle Escapes the Plane

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Turtle Geometry on a Sphere 205

Figure 5.3
Turning without "turtle turning."

small distances. It is as if the turtle carries a little ruler, constantly
checking that its left and right sides are moving equally. We'll return
to these points later.

5.1.2 Turtle Turning and Trip Turning

Now let's go back to the sphere and the closed path in figure 5.1. The
sides are straight in a turtle sense, but the path still requires three
900 turns. Should we just abandon the closed-path theorem? Not yet!
Let's at least see exactly what went wrong in the tUrtle proof given in
subsection 1.2.1 that the total turning around any closed path should
be a multiple of 360°. Remember the key idea in the proof: When the
turtle completes the path, it .is once again facing in the initial heading,
so the total turning (the net change in heading) must be a multiple of
360°

In terms of net state change on this spherical triangle, we cannot
dispute that the turtle has at the end returned to its initial heading. So
iii this sense the change in heading must be 360° (or some multiple). The
problem is evidently that, in contrast with a plane, net heading change
is not equal to turtle turning.

Can we focus on what causes turning not to equal heading change?
Get your globe out again and try this: Start the turtle at the north pole
and notice which way it is pointing. Walk the turtle straight ahead until
it gets to the south pole. Now, without letting the turtle turn at all,
walk it sideways (a good straight turtle walk, but sideways) all the way
back up to the north pole. Presto! The turtle has been turned 180°
without "turning" at all. That's the problem with spheres; the turtle
can get turned even if it's not turning. If you examine figure 5.3 you
will easily see the sphere turning the turtle without the turtle knowing.

So there are two kinds of turning: actual "turtle turning" and "trip
turning." The turtle thinks it is turning only when it is "turtle turning,"
but it can be turned by going on a trip even without "turtle turning."

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

206 Turtle Escapes the Plane

start

totdl turtle
turning

turtle
turning

Figure 5.4
(a) Turtle carrying a pointer around the 3 X 900 triangle. (b) Comparison of pointer
direction with turtle direction.

Now that we realize that spheres can turn the turtle without the turtle
knowing it, we can hypothesize about that extra 90° in the 90°-90°-90°
path: While the turtle was walking and turning 270°, it must have been
turned an additional 90° by the sphere.

Can we compute trip turning other than as the amount by which the
closed-path theorem fails? We want a method for seeing trip turning-
something like figure 5.3, but more general and more intrinsic. If there
were some general way to think of something traveling around a closed
path without turtle turning at all, then the extra (trip) turning would
become visible directly. One way to do this is as follows: Suppose turtle
carries a pointer. While the turtle is walking straight, it always keeps the
pointer from turning by keeping it at a constant bearing from turtle's
own heading. And whenever the turtle does some (turtle) turning, it
again makes sure not to turn the pointer. In other words, the turtle
is carrying the pointer around the path without (turtle) turning the
pointer. Therefore, any heading change in the pointer must be due to
trip turning.

Let's try that idea out on the 90°-90°-90° path. Turtle starts on the
equator with the pointer facing north as shown in figure 5.4a. It walks
to the north pole, turns right 90°, and returns to the equator. But now
the pointer is facing west. The turtle returns to the initial position with
the pointer facing west. There is the 90° trip turning that fooled us
into thinking that the turtle must have turtle-turned 360°, whereas in
actuality it only turtle-turned 270° and was trip-turned the other 90°
The bug in the closed-path theorem has been isolated. It is this change in

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Thrtle Geometry on a Sphere 207

pointer headingtrip turning, pure and simple. In a plane, trip turning
doesn't exist.

5.1.3 Angle Excess

We've made some real mathematical progress because we have run across
a new concept. The concept is what mathematicians call angle excess, or
simply excess. Excess is, by definition, the trip turning that the pointer
gets turned when being carried around a closed path. Right away there
are some nice things to notice about angle excess: You can ask what it
is for a closed path around any polygon, not just a triangle, and you
can ask about angle excess on any surface, not just a sphere (because we
know how to make the turtle walk in a "straight line" on any surface).

Excess is a rather general concept. It is an angle associated to any
closed path on any surface. In fact, we can restate the closed-path
theorem so that it holds for simple closed paths on arbitrary surfaces:

If the turtle walks around a simple closed path on a surface, then

(total turtle turning along the path) + (excess along the path)
= 2ir radians = 360°.

Figure 5.4b illustrates this equation on our 3 X 90° triangle and shows
that the turtle can directly measure total (turtle) turning at any time
by seeing how far it has turned away from the pointer direction.

This formula and the pointer measuring process are a beginning, but
they don't really tell us much unless we know more properties of excess.
Here are some questions we might ask about this quantity:

Can we ever compute angle excess without directly measuring it?
We've hinted at a partial answer: An excess angle on a plane is always
zero. That's precisely another way of stating the original closed-path
theorem for paths in a plane. This leads to the question of whether the
plane is the only surface with zero excess for all closed paths.

Is angle excess always greater than zero for any surface, or might
there be surfaces for which the turtle must turn more than 360° in going
around a simple closed path?

In general, what does knowing excess tell you about a surface?

What does angle excess really mean?

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 5.5
(a) Measuring excess around a triangle starting from point A. (b) Measuring excess
around a triangle starting from two different locations. The angle from z to z is the
same as the angle from y to w.

But let's not get too far ahead of ourselves. We should make sure the
excess concept is nailed down. That means asking some simple questions
about it. For instance, we've been talking about the "excess around a
path." But is this notion really well defined? That is, does carrying a
pointer around a path really specify exactly one number to be associated
with the path? In particular:

Question i Does the measured excess depend on the initial direction of
the pointer?

Question 2 Does it depend on where the turtle starts on the boundary?

Answer i No. Suppose the turtle carried two different pointers around
the same path. While the turtle is walking, both pointers must maintain
the same heading with respect to the turtle line, since otherwise they
would be (turtle) turning. And neither pointer does anything at all while
the turtle turns. So the angle between the two arrows is always constant,
and the turtle might as well carry a disk with two arrows marked on
it. Therefore, we see that the difference between the initial and final
headings for either pointer is just the net rotation of the disk. Both
pointers measure the same excess.

Answer 2 No. Look at a diagram (figure 5.5 a) of a turtle measuring the
excess around a path by starting at A and carrying a pointer all the
way around. The excess is marked O. Suppose instead that the turtle
measures the angle excess starting at some other point B. In order to
compare the two measurements, we'll imagine that the turtle does both

208 Turtle Escapes the Plane

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Turtle Geometry on a Sphere 209

measurements at once, as shown in figure 5.5b. The turtle starts at A,
and the directi6n of the pointer is labeled z. Then the turtle moves to B,
and the pointer direction is labeled y. Next we go all the way around to
A again, where the pointer direction is labeled z. The difference between
z and z is, by definition, the excess O as measured from A. Finally,
let the turtle continue to B once more, where the pointer direction is
labeled w. The excess as measured from B will be the difference between
y and w. But now regard z and z as two different pointers being carried
simultaneously from A to B. The angle between them remains constant.
(Remember the disk with two pointers on it from answer 1?) Since the
angle between pointers is O at A, it must also be O at B.

The result of answers i and 2 is that it doesn't matter where the turtle
starts along a given closed path, or at what heading. The excess will be
the same.

5.1.4. Excess is Additive

Let's get back to more investigation and less formalization by con-
centrating on the sphere for a while. We started on the sphere with
a path of fairly large excess, 90°. Can you imagine a closed path with a
bigger excess? How about the equator? The turtle starts anywhere and
travels all the way around. The total turning is zero, so by our formula
the excess is 360°. How about a path with smaller excess? That's no
problem. Just take a path that is very small in comparison with the size
of the sphere. If the turtle remains in a very small region, the sphere
looks almost flat, almost like a plane, so the excess must be close to
zero.

It appears as if paths around small regions have small excesses and
paths around large ones have large excesses. If you haven't already
noticed, the path around the equator has 4 times the excess of the 3 X 90°
path, and the hemisphere bounded by the equator can be constructed by
pasting together exactly four of the 3 X 90° triangles. Could it be that
excesses add? Take a look at any triangle made up of two 90° angles at
the equator and n degrees (interior angle) at the pole. It has excess of n
degrees and can be made up of n triangles of 1° excess (see figure 5.6).
This is beginning to look like a theorem.

Theorem If a triangle is subdivided into two subtriangles, then the excess
of the triangle is the sum of the excesses of the pieces.

Notice that the theorem doesn't mention anything about spheres in
particular. Neither will the proof; it is true for triangles on any surface.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 5.6
The excess of the large triangle is the sum of the excesses of the small triangles.

turtle 2 A turtle I

Figure 5.7
Excess BCD (x to z) = Excess ABC (z to y) + Excess ACD (y to z).

Proof Look at a record of a turtle using a pointer to measure the excess
in triangle ABC (figure 5.1). The pointer starts out with heading x and
ends up with heading y. Now measure the excess of triangle ACD. To
make things simple imagine a second turtle that starts from A with the
same heading, y, at which the first turtle ended measuring ABC. Then
the second turtle's pointer should agree with the first turtle's all along
the line AC. In particular, the pointers of the two turtles will agree at
point C. The second turtle then continues to D and ends up at A with
pointer heading z. Now we'll measure the excess in the large triangle
BCD as follows: Start at A with pointer heading x and follow the first
turtle's path as far as C. At C, pick up the second turtle's path (this
can be done without changing the pointer heading) and follow it around
clear back to A. The pointer winds up with heading z. So the excess of
the large triangle is the angle from x to z, which is just the sum of the
excesses (z to y and y to z) of the two smaller triangles.

This is a pretty good theorem. It is the core of a really great one:

210 Turtle Escapes the Plane

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Turtle Geometry on a Sphere 211

Figure 5.8
Two regions joined along a common arc.

Excess Additivity Theorem The excess of any polygon is the sum of the
excesses of the pieces in any polygonal subdivision.

Can you see how to prove this? One way is to notice that the reasoning
in the proof above still works even if we combine whole polygons at
a time. It doesn't really depend on the pieces being triangles. All we
need is a situation like the one shown in figure 5.8, in which the two
pieces are pasted together along a single arc. In fact, we don't even need
polygons and vertices. The proof depends only on topology, how pieces
are hooked together. We'll have more to say about this in section 5.2.

5.1.5 Excess and Area

Compare the excess additivity theorem to the following obvious and
familiar theorem:

Theorem The area of any polygon is the sum of the areas of the pieces
in any polygonal subdivision.

Excess acts like area in this respect. Could it be that excess is propor-
tional to area, that is, E = kA, where E is the excess around a polygon,
A is the area of the polygon, and k is some constant? This would ac-
count for the additivity of excess. But it is obvious that k couldn't be
a universal constant like ir. After all, k must be zero for a plane but it
can't be zero for a sphere. Not only that, but it can't even be the same
constant for all spheres. Consider our 3 X 900 path on a sphere the size
of the earth and on one the size of a ping-pong ball. They have the same
excess, but certainly not the same area. So how about the hypothesis
that k depends on the surface, and every surface may have a different

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

212 Turtle Escapes the Plane

k? Let's try that out. Obviously any plane has k = O. The following
theorem shows that the hypothesis is also true for spheres:

Theorem For any polygon on a sphere of radius r, E = kA where k =
hr2 (if E is measured in radians).

Proof First we'll show that the ratio E/A is the same for all polygons on
the sphere. (Then, denoting this constant ratio by k, it will be simple
to find out what k is.) The idea is to measure both excess and area
by subdividing a large polygon into a lot of tiny identical pieces and
adding them all up. For example, you can subdivide any polygon into
tiny standard-sized squares. (Of course there can be a little bit of surface
left over, but not much. You can always use smaller squares to get a
better approximation. And calculus buffs know how to talk about the
limit of small squares.) Then the area of the polygon is the sum of the
areas of the individual small squares. Similarly, the additivity theorem
ensures that the excess of the polygon is the sum of the excesses of the
individual squares.

Now, since the sphere is the same all over, the individual squares can
be taken to be absolutely identically shaped pieces of the sphere. Thus,
not only will they all have the same area, they will also all have the same
excess. Let a be the area of any one of these small square pieces, and let
e be the excess. Then the area of any large polygon that consists of N
small squares is A Na and the excess is E = Ne. So E/A = e/a is
a constant that is independent of the size or shape of the large polygon.

Finally, since the ratio E/A, which we will denote by k, is the same
for all polygons on the sphere, we can compute k by considering any
particular polygon for which we know both the excess and the area.
Take, for instance, the equator bounding half the sphere. For that path
we have

A = sphere area 2irr

and

E = 2ir radians,

so

k
E 27r i
A 2irr2

This completes the proof.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Turtle Geometry on a Sphere 213

Figure 5.9
Is this a turtle line?

We can combine this theorem with the definition of excess as the cor-
rection factor in the total-turtle-trip theorem to get a formula (originally
due to Gauss) which relates the area of a spherical polygon to the total
turning around its boundary:

For a turtle walking around a polygon on the surface of a sphere,

total turning (in radians) = 27r -

where A is the area of the polygon and r is the radius of the sphere.

Exercises for Section 5.1

[D] We proved a formula relating the excess around a closed path
to the area of the interior. But any closed path on the sphere bounds
two regions, which in general do not have the same area. Which region
do we take as the inside? Can you clarify the definitions of excess and
"inside" so that the area formula in 5.1.5 will work for both of the regions
bounded by a closed path? [HA]

Give a formula for the sum of the interior angles of a triangle on a
sphere in terms of the area of the triangle. [A]

Convince yourself again that an equator must be a turtle line. Is the
path of a boat with rudder aimed straight a turtle line? How about a
jet plane flying "straight"?

Look at the record of turtle tracks in figure 5.9. The left legs take
the same number of steps as the right legs, and all steps are the same
length, so why isn't the track a turtle line? (It obviously isn't one.) Can
you apply the principle of "a line must be everywhere the same"? Can
you answer the question without the principle? Another problem along
the same lines is as follows: If a line must be "everywhere the same,"
then what happens to a turtle line on a flattened sphere as it goes from
the round part to the fiat part? Can you reformulate the "a line is
everywhere the same" principle so that it really applies to turtle lines?
[H]

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

214 Turtle Escapes the Plane

Would a little turtle (say, one you might use for measuring turtle
lines on a ping-pong ball) draw the same turtle lines on a big sphere as
a big turtle? What do you have to say about turning a turtle loose to
draw triangles in your back yard? Would the turtle's size matter? Think
about a tiny, tiny turtle crawling over each pebble in your back yard.
Does that make you nervous about what a turtle line really is? After all,
you know pretty much what a triangle of turtle lines, say, 20 feet on a
side should look like, but wouldn't a tiny turtle get all confused by the
pebbles and blades of grass? Who tells you what size turtle to use? [H]

[D] In 5.1.4 we used the formula Total Turning + Excess = 360°
together with the fact that the equator is a turtle line to deduce that the
excess around the equator is 360°. But can you use the pointer method
to see directly that Excess = 360° rather than 0° or 720°? [HA]

Imagine that a turtle is a two-wheeled creature with a motor on each
wheel. Can you convince yourself that the total turning of this turtle is
simply the distance rolled by one wheel minus the distance rolled by the
other wheel divided by the distance between wheels? Does this mean
that a car going over a bump with its left wheels but not its right will
be turned by an amount which is equal to the extra distance traveled
going up and over bump, divided by the distance between wheels? [A]

Exercise 7 gives some remarkable information about staggered starts
on race tracks. Show that the difference in pathlengths of adjacent
lanes in going around any non-self-intersecting track on a plane is 2ir X
(width of lane). Show that a figure-eight track does not need a staggered
start. Are these statements true if the track is banked? [HA]

5.2 Curvature

We've cleared up the mystery of non-360° turtle trips on the sphere, and
discovered a relation between angles and areas for spherical polygons.
The wonderful thing is that much of our insight carries over to geometry
on arbitrary surfaces as well. This is because our methods of investiga-
tion are local and intrinsic. The whole theory, remember, depended on
having a notion of the difference between "straight" and "turning," and
we were careful to define "straight line" in a way that doesn't rely on
coordinate systems, intersecting spheres with planes, or anything else,
except for a turtle walking along, locally marking off equal distances
with its left and right legs. Thus, anywhere a turtle can walk we have
turtle lines, excess, and the additivity theorem. Let's see how the other

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Curvature 215

observations we made about spheres might carry over to arbitrary sur-
faces (figure 5.10).

5.2.1 Curvature Density

Does the relation between excess and area E = kA hold true on an
arbitrary surface? Pretty clearly not. Suppose we have a sphere that is
squashed flat on one side. The excess is zero for polygons on the- flat
part, but regions on the rounded part will have nonzero excess. Where
does the proof we gave for spheres in 5.1.5 break down? Exactly here:
We divided our polygon into small square patches and then noted that,
for a sphere, all the squares are identical; each square has the same
k = e/a. That's not true for the flattened sphere. Little square patches
taken from the flat side will be flat, with k = 0, while squares taken
from the curved side will not be flat. So k e/a is different on the two
parts.

In general, for an arbitrary surface, we can think of k as a measure-
ment that can be made at any point on the surface. The value of k at a
point is the excess per unit area of a small patch of surface containing
the point. We call k the curvature density of the surface at a point. It is
"density" because it is "stuff per unit area" (in this case, excess per unit
area). And it is called "curvature density" rather than "excess density"
because, although it is measured using excess, we can interpret it as
telling how "curved" the surface is at the point. Think of it this way:
Suppose we want to approximate a small patch of an arbitrary surface
by a small patch of some surface we know very well. Within a small
area almost any surface will appear flat like a plane, but we can make
an even better approximation by using a small piece of a sphere. We'll
choose the approximating sphere to have the same excess per unit area
as the patch of surface. So if k doesn't change radically in the small
patch, all the geometry thereangles, total turning, and so onwill be
very close to the geometry on a sphere whose excess per unit area is k,
that is to say, a sphere whose radius is determined by k = 1/r2. The
smaller the radius of the approximating sphere (that is, the greater the
curvature density), the more "curved" we say the surface is. A football,
for example, is not too curved in the middle; k is small there. But at the
pointed ends the football is curved as much as a sphere of small radius.
From the middle to the pointed ends, k gradually increases. The surface
of a very smooth lake will be well approximated by a patch of a sphere
as big as the earth; the density of curvature is so low that you might
think it was flat.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 5.10
Turtle inve8tigating an arbitrarily curved surface. (Drawing by Joseph Coté.)

216 Turtle Escapes the Plane

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Curvature 217

Figure 5.11
A figure that is not a topological disk can nevertheless be divided into topological
disks.

5.2.2 Total Curvature

Curvature density is a local quantity that we can measure in the vicinity
of a point on an arbitrary surface. In this subsection we show how to
define a global version of curvature density called total curvature. Start
with a region of an arbitrary surface and divide it into polygonal pieces.
For each polygon, compute the excess. Now sum the excesses for all the
pieces. The result is called the total curvature, K, of the region. Of
course, in order for this definition to make sense, we have to know that
if we chop up a region into polygons in two different ways, then the sum
of the excess of the pieces is the same in both cases. This is true, and
we leave the proof to you (exercise 4).

If the region we started with was itself a polygon, then the additivity
theorem implies that K is precisely equal to the excess around the
boundary of the polygon. So we can think of K as a sort of "excess
over the region," except that it works for any region on a surface, not
just for polygons. For example, the boundary of the surface shown in
figure 5.11 is not a single simple closed path, so there is no obvious
excess to relate to the total curvature K. Nevertheless, we can divide
the surface into two polygonal pieces and sum the excesses to get total
curvature. (There is more to say on this; see exercise 15.)

Even better, we can compute K for a region that has no boundary
at all: the sphere. Divide a sphere into two pieces, the northern and
southern hemispheres. Each of these is bounded by the equator, which,
as we know, has excess 2ir. So the two hemispheres each have excess
27r, giving 4ir for the total curvature of the sphere. This is somewhat
striking: The curvature density k of a sphere depends on the radius, but
the total curvature K is the same for all spheres.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 5.12
Square with handle.

Can we say exactly which regions have K equal to excess around the
boundary? The answer is found in the proof of the additivity theorem:
whichever regions we can build up by pasting together polygonal pieces,
always joining pieces two at a time along a single arc. Notice that this
ensures that when we're done, the boundary of the region will be a
simple closed curve. For example, we can't build the surface in figure
5.11 this way, because we can't add a piece to close one of the rings
without connecting to the rest of the surface along two separate arcs.
(Incidentally, the fact that a region is bounded by a simple closed curve
does not guarantee that it can be built up from pieces according to the
required scheme. The "square with handle" shown in figure 5.12 is one
example.)

If you remember our discussion of the deformation theorem of sub-
section 4.3.1 you may suspect that these regions that can be built up
from small polygonal pieces, each piece joined on along a single arc, are
precisely the things we called topological disks (that is, regions that can
be deformed to a disk). And indeed this is the case. So the relation
between total curvature and excess can be restated as follows:

Theorem For any topological disk on an arbitrary surface, the angle
excess around the boundary is equal to the total curvature of the interior.

In summary: Thinking about angle excess has led us to two versions
of curvature, curvature density and total curvature. We can clarify
the relation between these two notions by making an analogy between
curvature and paint. Think of the surface as covered with paint. The
curvature density is analogous to how much paint you have per little
chunk of surface area. Spheres have uniform coats of paintthat is, the
curvature density is the same at all places. If you want to know the total
amount of paint P on some surface with constant paint per unit area p,
the answer is simple: P - pA, where A is the total area. In the same
way the total curvature K of a surface of constant curvature density k

218 Turtle Escapes the Plane

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Curvature 219

is just K = kA. But just as in the case of a room that has one coat of
paint on the wall, a double coat on the woodwork, and no paint at all
on the windows, the curvature density of a surface may vary from place
to place. If the paint density varies from place to place, how do you
find out how much total paint there is? The answer is to divide your
surface into tiny pieces so that the paint density is pretty much constant
on each piece. You find out how much paint is on each little piece by
multiplying paint density times area, and then adding to find the total
paint.

There are two different ways to compute the total curvature of a
region. The first is the paint method: Divide the region into tiny pieces,
so that k is approximately constant on each piece, and add up k times
area for all the pieces. The second method you cannot do with paint:
Divide the region into topological disks of any size at all, and total up
the excess around the boundaries. With this method you need not look
to see if the curvature is uniform or examine every bit of the surface to
see how dense the curvature is there.

It is remarkable that these two processes end up computing the same
thing, that total curvaturesomething spread out over a whole region-
can be measured by a method that looks only at the boundaries of
the pieces in a subdivision. In fact, you may recognize this as another
instance of the "local-global" principle of section 4.2. That is to say,
we can determine a global quantity (total curvature) by accumulating
information (excess) that is measured locally at the boundaries of the
pieces in a subdivision. In section 5.3 we'll see how to put this property
of curvature to good use.

5.2.3 Cylinders

We've been talking a lot about arbitrary surfaces, but so far our only
concrete example has been the sphere. Let's look at another surface, the
cylinder (a tin can without top or bottom). What is k for a cylinder?

The answer is that k = O at every point, just as for a plane (and
therefore K O as well). The reason is profound: A cylinder is just a
plane rolled up, and rolling something up doesn't change any pathlengths
on the surface. (If you are not convinced, glue a rubber band to a piece
of paper. Now try to stretch the rubber band without ripping the paper.
Rolling the paper up won't do it, except for a tiny bit of stretching that
happens because the rubber band is not in the surface but a little above.)

If pathlengths don't change, then a straight (turtle) line in the plane

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 5.13
Turtle line and square are still turtle line and square when rolled into a cylinder.

remains a turtle line when the plane is rolled up into a cylinder. How
can we be so convinced that turtle lines are preserved? Because the
determination of what is a turtle line depends only on measuring small
distances: The turtle knows it is walking in a straight line when its left
legs and its right legs are moving the same distance in each step. Look
at the straight line in figure 5.13 and the turtle tracks around it. Now
imagine the paper rolled up. The turtle will still walk in the same tracks,
because no distances have changed. Angles don't change when you roll
something up either, so in any polygon of turtle lines on a cylinder we
will measure the same vertex angles as in the "unrolled" polygon on the
plane. Therefore the polygon will have zero excess.

There is an important lesson here. When we began with planes and
spheres, it was pretty clear that k = O meant what people usually mean
by "fiat" and k O meant "curved." But here is a surface, the cylinder,
that most people would say is curved. You have to decide now whether
you want to go on saying a cylinder is curved, as you always did, or
change your definition of "fiat" to mean k = O and then say that a
cylinder is flat. The latter possibility may sound very strange, but it
is a good thing to do if you are interested in a geometry that reflects
properties that are intrinsic to the surface, rather than how things look
to an observer outside of the surface. From an intrinsic point of view,
a cylinder is much more like a plane than it is like a sphere. In fact,
a turtle that wasn't allowed to go all the way around the cylinder and
discover its different topology would never be able to tell the difference
between that cylinder and a plane at all! So if you were talking to your
friends who haven't read this book you'd be better off saying that a
cylinder is curved, but a turtle living on the surface of a cylinder would
be happier to hear you say that its world is fiat.

220 Turtle Escapes the Plane

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Curvature 221

Figure 5.14
(a) Flattening a cone. (b) Turtle circle on cone is missing turning done in the gap
from 2ir; excess = O.

5.2.4 Cones

Almost any little piece of a cone can be easily laid flat on a plane.
This means that the cone is just about everywhere a zero-curvature-
density object; k = O almost everywhere. But there is an exception:
The tip won't flatten out without ripping. All the curvature in a cone
is concentrated at the tip.

We can compute how much curvature is in the tip by seeing how much
excess is contained in some path around the tip. A little trick makes it
easy to keep track of turtle turning on the cone: Slit the cone up the side
and lay it out flat to get a figure like a pie with a slice missing (figure
5.14a). Turtle turning can now be easily seen as change of heading in
the usual planar way, except in crossing the cut. So look at a simple
turtle circle centered around the tip (figure 5.14b). The total turning
along that path is short of 2ir by the turning that would have been done
in the pie gap to make a complete planar circle. But excess is, by our
excess formula, exactly what is missing in total turning from 2ir. So

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Insert slice

Figure 5.15
(a) Concentrated negative curvature: a pie with an extra slice. (b) Saddle surface-
spread-out negative curvature.

the turning in the gap is excess, and since that turning is precisely the
central angle of the pie gap, û, we conclude that O is the excess of the
path.

What is nice about cones, then, is that you can see the angle excess
directly: It is the angle you need to cut from a flat piece of surface to
make it into a cone.

Notice that this result, "excess of path around tip equals pie angle,"
does not depend at all on how big the path around the tip is. So you can
see by pushing the path closer and closer to the tip and always getting
the same excess that the curvature must be concentrated in the tip, and
that the curvatúre is zero everywhere else.

What is K for a region on the cone? It is zero unless the region
contains the tip, in which case K = O. How about k? We said that
k = O at every point except the tip. At the tip, k is infinite Don't
let that infinity upset you. After all, k is a density: stuff per unit area.
And on a cone, all the curvature is concentrated at a single point. With
a finite amount of curvature in a region of zero area (a point), density
must be infinite.

Suppose we make a cone using too much paper rather than too little-
not a pie with a slice taken out, but a pie with an extra slice, as shown in
figure 5.15a. You can't push such a thing flatnot because you have too

222 Turtle Escapes the Plane

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Curvature 223

little circumference and will rip the cone trying to flatten it, but because
you have too much circumference (for a given radius) and can't cram it
all into a plane. This cone has negative curvature. A path around the tip
contains more than 3600; hence excess is negative. The saddle surface
shown in figure 5.15b is an example of a surface with negative curvature
density at each point (see exercise 9).

5.2.5 Curvature for Curves and Surfaces

By way of a brief review, let's explore the analogy between the curvature
of surfaces and the total turning of curves in the plane, which we studied
in chapters 1 and 4.

First of all, the definitions we gave for both surface curvature and
curve turning were local and intrinsic. They could be expressed in
terms of a turtle crawling along a curve or a surface without recourse to
coordinate systems.

What is the analog of total curvature K for a curve? It is simply the
total turning of a turtle walking along the curve. What corresponds to
curvature density k? By analogy with excess per unit area on a surface,
we should define curvature density of a curve to be turning per unit
length. So for any segment of a curve, we can define kcurye to be the
total turning along the segment divided by the length of the segment.
This is the same thing we called simply "curvature" in previous chapters.

Just as a sphere has constant k, a circle has constant kcu,,e: In
traversing a circular arc subtended by a central angle of 8 (in radians)
the turtle turns the same angle, 9, and goes a distance d = rO. Hence,
by the above definition, k0,e = e/re = 1/r, which is analogous to
k = 1/r2 for a sphere. (The analogy goes farther; see exercise 18.)

Comparing curvature in one and two dimensions can be misleading,
however, when we think about negative curvature. For a curve, the
difference between positive and negative curvature depends on the direc-
tion in which the turtle turns. Turning right rather than left changes
the sign of the curvature. So you might expect that a similar kind of
reflecting will change positive to negative curvature in two dimensions.
For example, it is easy to imagine that a turtle crawling on the inside
of a sphere would see negative curvature. But this is false. If we look
carefully, we can see that polygons on spheres always have positive ex-
cess, whether measured from the inside or the outside. To find negative
curvature, we need to look at something like the saddle surface shown in
figure 5.15b. Actually, this whole notion of inside versus outside a sur-
face is misleading. It is better to think of the turtle as a two-dimensional

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 5.16
Which of these paths on a torus are turtle lines?

creature who lives in a curved world, rather than on it, just as plane
geometry is about figures lying in the plane, rather than on top of or un-
derneath it. Here is another way to say the same thing: We should think
of an idealized two-dimensional surface like the sphere as just thata
two-dimensional surfacenot as a shell with separate inside and outside
surfaces.

Exercises for Section 5.2

Suppose turtle walks all the way round a cylinder on a path perpen-
dicular to its length. That is a closed path with zero turtle turning,
hence 3600 excess. But didn't we say that a cylinder has zero curvature?
Doesn't zero curvature mean that there can't be any excess? Explain.
[HA]

Which surfaces have no excess anywhere? Can you formulate a
general description of such a surface? [A]

Figure 5.16 shows some paths drawn on a torus. Which of these are
turtle lines? [A]

[D] Show that total curvature K is well defined. That is, show that
if you chop up a region into topological disks in two different ways, arid
sum up the excess around the boundaries, you'll get the same answer in
both cases. [HA]

The cone is an example of a surface where curvature is concentrated
at a point. Can you find an example of a surface where curvature is
concentrated along a curve? [A]

Prove that a "radial circle" drawn around the tip of a cone (by taking
points of equal distance from the tip) really is a circle from the turtle's
point of viewthat it can be drawn by going FORWARD a little and turning
a little, over and over. Is a radial circle centered about some point

224 Turtle Escapes the Plane

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Curvature 225

other than the tip of the cone still a turtle circle? What do turtle circles
look like on a sphere? How about radial circles on spheres? [A]

Show that a football has total curvature 47r. [ITA]

What is the total curvature of a cube? What is k? Is there con-
centrated curvature? If so, where and how much? [A]

Envision a point on some surface, and the shape of the surface near
the point. Show that if the surface looks like a hill or a depression the
curvature density k is positive at the point, whereas if the surface looks
like a saddle k is negative. Do this geometrically, by drawing some turtle
lines and estimating excess. Even better, make a model of the surface
and draw some turtle paths on it.

Suppose that you make a scale model of a surface, say scaled by a
factor of s. Show that K remains unchanged. How does k change? [A]

Using the fact that changing the scale of a surface does not change
total curvature, conclude once again that all the curvature in a cone is
in its tip. [HA]

Suppose that a turtle is a bit out of adjustment and takes slightly
longer (by 2%) strides with its left legs than with its right. (Assume
that the distance between turtle's right and left legs is the same as its
right-side stride.) What is the radius of the circle such a turtle would
walk on a plane if it did not "turtle turn?" (Use turtle stride as your
unit of distance.) Suppose this turtle walks 25 steps on some surface
and finds it has returned to the initial position and heading. What is
the total curvature interior to this path, if the interior is a topological
disk? How about a 400-step trip? [A]

[P] Suppose that a turtle is sitting at the tip of a cone. It goes a
distance r away and draws a circle around the tip. According to the
turtle's measurement, r is the radius of the circle. But of course it finds
that the circumference of the circle is not 2irr, but something less. (It is
missing exactly the "defect pie" from being 2irr.) The turtle will discover
the same sort of thing on a sphere: The circumference of a circle is not
2irr, but a little less. Suppose we define "global ir" on a surface to be
equal to the circumference of a circle divided by twice the radius. What
is global ir for a cone? For a sphere? Does it depend on how big a
circle you draw? Does it depend on where you draw the circle? If you
cannot give the precise value, can you give upper and lower bounds for

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 5.17
Segment of an umbrella.

global ir? Define "intrinsic ir" to be the circumference divided by twice
the radius of curvature and answer the same questions for it. [H]

[P] Suppose somebody told you that not only is the earth not fiat,
our universe is not fiat either. What could that mean? Answer in terms
of angles, circumferences and radii of circles, and perhaps surface areas
and radii of spheres. Notice before starting that we never had to leave
the surface of a sphere to discover that it was curved, as long as we had
drawn turtle lines. (Einstein decided that the universe was not fiat. He
thought it was curved in a very special way to account for the existence
of gravity. In fact, he hypothesized that the paths objects follow under
the influence of gravity are just "turtle paths" in our curved universe.
We'll have much more to say about this in chapter 9.)

Can you find the total curvature of a surface with holes in it (figure
5.11) in terms of the excesses of the boundaries of the surface? [HA]

An umbrella is made by sewing together six pieces, as shown roughly
in figure 5.17. Where does the umbrella have negative curvature? How
can you tell? [HA]

We have ignored the problem of non-simply-closed curves. Show
that additivity still works for the situation shown in figure 5.18 in the
following way:

Total turning around the closed path
= (21r - total curvature contained within the outer loop)

+ (2ir - total curvature contained within the inner loop).

Extending the analogy between curvature for circles and spheres,
the central angle O of a circular arc has a counterpart called solid angle,
12. Just as O measures how much of a plane lies between two rays
(or how much plane can be seen from the center through a gap in a
circle), 12 measures how much "sky" can be seen through a window in a

226 Turtle Escapes the Plane

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Total Curvature and Topology 227

Figure 518
What is the relation between excess and total curvature for this curve?

Figure 5.19
Solid angle for a region on a sphere measures the opening subtended by it.

sphere (figure 5.19). By analogy with the formula O kcurved = dir,
li is defined to be li = kA = A/r2, where A is the area of the window.
Notice that O can be measured as the turning done by turtle along the
arc. In an analogous way, can you relate lito things that the turtle can
measure on the sphere's surface? [A]

5.3 Total Curvature and Topology

We ended the previous section with an analogy between the total cur-
vature of a surface and the total turning of a curve. But there is one
property of total turning that we haven't seen reflected in our study of
surfaces: topological invariance. Remember that the total turning of a
closed curve is a topological invariant (section 4.1). However you deform

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 5.20
Pushing a dent in a sphere and surrounding the dent by a turtle path.

the curve, the total turning remains the same. Now we'll see that this
same fact is true for the total curvature of a closed surface.

5.3.1 Dents and Bends

Suppose you put a small dent in a sphere. What happens to the total
curvature? Perhaps it depends on the dentif it is a flattening maybe
that reduces the curvature; if it is a pointy kind of outward dent maybe
that increases the curvature. But the answer is that total curvature is
unchanged.

Proof Surround the dent with a closed path, which isolates within a
topological disk the region affected by the dent, but make sure that the
path is far enough away from the dent so that the immediate vicinity
of the path is unaffected by the dent (see figure 5.20). The curvature
outside the disk obviously has not changed at all. What is happening
inside? Think of a turtle measuring the total curvature within the disk
by computing the excess along the path. Before and after denting, the
turtle treks the same territory. The excess must be the same before and
after denting, and so the total curvature does not change at all.

This fact illustrates what a strong statement we are making when
we assert that we can measure something spread out over a region (the
total curvature of a topological disk) by measurements made only at the
boundary of the region (in this case, the excess along the boundary). The
consequence is that any deformation of the region that doesn't affect the
boundary must leave the total curvature invariant.

228 Turtle Escapes the Plane

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Total Curvature and Topology 229

Figure 5.21
Topological sphere Cylinder + Two caps.

So total curvature is invariant under small deformations. But this
means it must be invariant under any topological deformation. The
point is that any topological deformation can be made by doing a bunch
of small deformations one at a time, each small deformation affecting
only a part of the surface that can be isolated within a disk.

You can dent, bend, smash, buckle, push, or pull a sphere one small
piece at a time into any shape you choose and the total curvature remains
the same. It doesn't change no matter what you do to the sphere as
long as you don't rip it or in some other way change its topology. A
football has total curvature 4ir. A Mickey Mouse balloon, ears and all,
has total curvature 4ir. That sphere we flattened on one side still has
total curvature 4ir. (Suppose we smash the southern hemisphere flat.
That part has total curvature zero, and the northern hemisphere has
only 2ir. Where did the other curvature go? It's there; find it.)

Suppose you take a sphere and pull it to make a cylinder capped on
each side with a hemisphere (see figure 5.21). The resulting topological
sphere still has total curvature 4ir. But each cap has 2ir, so that doesn't
leave you anything for the cylinder. This is another way to show that
cylinders have zero total curvature (and, since a cylinder is the same all
over, that the curvature density is zero as well).

What happens to total curvature when we deform a cylinder? To be
sure, any deformation whose effects we can isolate within a topological
disk will always preserve total curvature. But, for example, suppose we
take the cylinder and spread it out at the end to create flanges (figure
5.22a). Can we assert that this flanged cylinder has total curvature
zero? No, we can't, even though the flanged cylinder is topologically
the same as a regular cylinder. Look carefully what happens when we
deform the cylinder in a little patch near the edge (figure 5.22b). We
can't surround that deformation by a closed turtle path, simply because
the turtle would have to run off the edge of the cylinder to get around
the deformed part. There is no turtle-path barrier, so you can push
curvature off the edge. On the other hand, any deformation that does
not affect the boundary of the cylinder (as in figure 5.22c) cannot affect
the total curvature.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 5.22
(a) Flanged cylinder. (b) Deforming the cylinder near the boundary may change total
curvature. (c) A deformation of the cylinder that preserves total curvature.

230 Turtle Escapes the Plane

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Total Curvature and Topology 231

There is an important class of surfaces for which this problem of
deformations near the boundary cannot arise. These are the closed
surfacesthose surfaces that, like the sphere, have no boundary to begin
with. (We disallow planes or infinitely long cylinders as closed surfaces,
by stipulating that a closed surface must not stretch off "to infinity.")

The following theorem summarizes the preceding observations:

Theorem Total curvature K is a topological invariant for closed surfaces.
For surfaces with boundary, the total curvature is unchanged by defor-
mations that do not affect the vicinity of the boundary of the surface.

Once again, the situation for the total turning of a curve is analogous.
For closed curves, total turning is a topological invariant. But it is
certainly not a topological invariant for nonclosed curves, since any
nonclosed curve can be deformed to a straight line segment. On the
other hand, if we make a deformation of a curve that keeps the curve
fixed in a vicinity of the endpoints, total turning will be unchanged.

5.3.2 Concentrated Curvature

Are you puzzled by the sphere with one hemisphere squashed fiat? The
flattened side has no curvature and the other hemisphere has total
curvature 2ir, yet the entire surface is topologically a sphere and has
total curvature 4ir. Where is that missing 2ir of curvature? It must be
concentrated in the edge between the two hemispheres.

Here is another example of the same phenomenon. Take a cylinder
and close it at the top and bottom with two fiat disks. The resulting "tin
can" is topologically a sphere, but the disks and the cylinder each have
zero curvature. There must be 4ir worth of total curvature concentrated
in the edges that form the rims of the can. This concentrated curvature
arises because the pieces joined together are not matched: To a turtle
walking on the cylinder that forms the side of the can the rim is a straight
turtle line, but to a turtle on the top of the can the rim is a circle, not
a straight line. This "difference of opinion" shows up as excess in a
strip near the rim. Figure 5.23 shows a rectangular path surrounding
a part of the rim given by an arc of angle O. The "rectangle" consists
of four right angles, two straight sides crossing the rim, and two paths
measuring the turning in the arc from opposite sides of the rim. Now
the four right angles, the two straight sides, and the arc on the side
of the can contribute 2ir total turning. So the arc on the lid accounts
for the whole excess, and it has a turtle turning of O. In other words,

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 5.23
A rectangle enclosing part of the rim of a tin can.

there is O worth of curvature concentrated in this piece of the rim. Since
all parts of the rim look the same, there must be 2ir worth of curvature
in the entire rim, or 4ir in both rims. The tin can does indeed have the
same total curvature as the sphere. The curvature density k for the tin
can is zero on the side, top, and bottom, and infinite along the rims.

In general, we can construct surfaces by pasting together pieces, but
before we can assert that the total curvature of the surface is the sum of
the curvature of the pieces we must check to make sure that there isn't
any curvature concentrated along the edges or in the corners between
the pieces. How do we check such a thing? If the pieces fit together
smoothly with no sharp edges and with no sharp points (such as the peak
of a cone), then there won't be any concentrated curvature. If there is a
sharp edge, then we can measure the total curvature concentrated there
as the difference of opinion between two turtles, each one computing
the turning along the edge as viewed from its piece of the surface (see
exercise 5). The curvature at a sharp point can be measured by a turtle
trip around it.

5.3.3 Cutting and Pasting

What is the total curvature of a torus (the surface of a donut)? The first
thing to notice is that any torus has the same total curvature as any
other. A fat torus with a small hole and a skinny torus like the inner
tube of a bicycle tire are topologically the same and therefore have the
same total curvature. We can make a torus by pasting together surfaces
whose curvature we do know: cylinders. Take a cylinder (for which k =
O) and bend it as shown in figure 5.24a. If we're careful not to do any
stretching at the boundary of the cylinder, then this bent cylinder still
has total curvature zero. Now paste two bent cylinders together (figure
5.24b) to get a torus. Each half of the torus has total curvature zero.
Therefore, the whole torus does also.

232 Turtle Escapes the Plane

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 5.24
Joining two bent cylinders to make a torus.

Theorem Any torus has zero total curvature.

We are not asserting that a torus is flat, like a cylinder or a plane. That
would be saying that the curvature density is zero everywhere. What the
theorem does say is that any torus has just as much negative curvature
as positive curvature.

So now we know the total curvature for two kinds of closed surfaces,
spheres and tori. A sphere is not topologically the same as a torus, yet
there is a relation between them. The torus can be described as a "sphere
with a handle attached." The process of "handle attaching," though not
a deformation, is a good, general way of making new surfaces from old.
We say "good" because it is easy to keep track of how total curvature
changes in the process. Here is how this is done for a sphere and a torus:

Start with a sphere and flatten out two regions on it. From each
region cut out a flat disk. Now paste a "handle" in the holes left by
the disks (figure 5.25a). The handle is topologically a cylinder, but the
edges of the cylinder have been flanged out to match smoothly with the
flat regions around the disks. The result is a torus. In other words, we
have the equation

(sphere) - (2 disks) + (handle) = torus.

Now compute the total curvature on each side of the equation. The
sphere has K 4ir. The disks were flat and so have K = O. The torus,
as we just saw, also has K = O. So in order for the equation to be
balanced, the handle must have total curvature 4ir.

We can also attach a handle to any surface by the same flattening,
cutting, and gluing operation. Since we know the curvature in the handle
now, we see that this always decreases the total curvature by 4ir. What
is the total curvature of a two-holed torus (figure 5.25b)? It is the same

Total Curvature and Topology 233

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

(c)

Figure 5.25
(a) Adding a handle to a sphere to make a torus. (b) Two-holed torus. (c) Surface
equivalent to topological sphere with six handles.

234 Turtle Escapes the Plane

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Total Curvature and Topology 235

as that of a torus with a handle attached or a sphere with two handles
attached:

K(two-holed torus) = 4ir - 4ir - 4ir = 4ir.

More generally, if we have a surface that is topologically the same as a
sphere with n handles attached, then the total curvature is given by

K(sphere with n handles) = 4ir(1 - n).

The importance of knowing about spheres with handles is this: Any
closed surface in three-dimensional space is topologically equivalent to
a sphere with a bunch of handles attached. For example, the surface
in figure 5.25c is equivalent to a sphere with six handles. So we see
from the equation above that the total curvature of any closed surface
in three-dimensional space is an integer multiple of 4r.

We won't give the proof that any surface in three dimensions is equiv-
alent to a sphere with handles, but we will whet your mathematical
appetite by informing you that there are closed surfaces that do not
have total curvature a multiple of 47r and, as a consequence, are "too
twisted" to fit into three-dimensional space. We'll meet some of them in
chapter 8. As it turns out, any closed surface, including these "twisted
ones," must have total curvature a multiple of 2ir. We'll get to that in
chapter 8 as well.

One final comment in our study of curvature on surfaces: We saw that
for closed plane curves the total turning is always an integer multiple of
2'r. Now we find a similar thing for closed surfaces in three-dimensional
space. All that arbitrary denting and bending and all those excess angles
must somehow combine to give exactly and precisely an integer multiple
of 4ir. That seems almost miraculous. You would have thought it
possible to change the total curvature of a surface a little bit by making
a small change to the surface. But no; in changing the total curvature
of a closed surface you must change it by a multiple of 4ir or not at all.

Exercises for Section 5.3

Show how to divide a cone into two pieces, neither of which has any
curvature. fA]

Consider a surface with a "knotted handle" (figure 5.26). How does
adding a knotted handle change the total curvature of a surface? [HA]

Take a plane and push a dent into it. Since this dent is just a topologi-
cal deformation, the total curvature is still zero. That means there must

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 5.26
Knotted handle on a flat square.

be places of both positive and negative curvature density. Where is k
positive? Negative? Zero? When is k a maximum? A minimum?
[Al

In subsection 5.3.3 we computed k for a torus by making the torus out
of two cylinders. But couldn't we have done the same thing by making
a torus out of one cylinder? [A]

[D] Justify the following recipe for measuring curvature concentrated
along an arc: Take two turtles, one on each side of the arc, and have each
turtle measure the total turning along the arc from its side. Show that
the difference between the two measurements is equal to the curvature
concentrated in a small strip around the arc. (How do you decide which
turtle's measurement to subtract from which?) [HA]

[D] The discussion in subsection 5.3.2 shows that, strictly, the excess
additivity theorem of 5.1.4 is false because it doesn't allow for the
possibility of concentrated curvature. But, remarkably, the proof of the
theorem is not at fault. The proof is true, but the theorem is false!
Find the part of the proof that needs to become a condition stated in
the theorem, and formulate that condition carefully. [HA]

The surface shown in figure 5.27 is formed by placing a smaller cube
on top of a larger one. What is the total curvature? How much is at
each vertex? [A]

[D] Must any torus have at least one point where the curvature density
is zero? [A]

In section 3.3 we showed by cutting and pasting that

(sphere) - (2 disks) + (handle) = torus.

236 Turtle Escapes the Plane

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Total Curvature and Topology 237

Figure 5.27
Double cube.

Figure 5.28
Pasting two flanged handles together.

Find another cutting-and-pasting construction that demonstrates that

(2 spheres) - (2 disks) + (handle) = sphere,

and use this equation to compute the total curvature of a handle. [A]

Two flanged handles are pasted together as shown in figure 5.28.
What is the total curvature? How much is concentrated along the circle
where the handles are joined? [HA)

Look at some familiar objects and consider their topology and
curvature. For example, your hand. Your wrist has an equatorlike turtle
path of excess 27r. That must be the total curvature of the topological
disk contained (your hand). Can you imagine deforming the surface
of your hand to a disk? Each of your fingertips looks much like a
hemisphere (has 2ir total curvature). Where is the 4 X 27r = 87r
curvature to balance out the 5 X 2ir on the fingertips and give the net
2ir curvature measured from the wrist? Isn't this a nice way to show
that if you have n fingers, you must have n - i spaces between them?

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 5.29
(a) The five Platonic solids: tetrahedron, octahedron, cube, icosahedron, and dode-
cahedron. (b) The starlike dodecahedron, a rectangular solid with faces which are
five-pointed stars (with a point protruding through the central pentagon).

[DD] Show that any closed surface in three-dimensional space must
have a place where the curvature density is positive. [HAJ

[D] Suppose you have a closed surface in three-dimensional space
that has non-negative curvature density at every point. Using the result
of exercise 12, show that the surface is topologically equivalent to a
sphere. [HAI

[D] A Platonic solid is any object that is flat almost everywhere
and otherwise is as "regular" as can be. That means its surface is made

238 Turtle Escapes the Plane

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Total Curvature and Topology 239

Figure 5.30
Chopping a handle into two bent-up rectangles.

up of a number of faces which are all identical regular polygons pasted
together. Each vertex of the solid is also identical to any other (has
the same number of faces adjoining). Use the result of exercises 12 and
13 to deduce that any Platonic solid must be topologically equivalent
to a sphere. Now, using the fact that you know the total curvature,
show that there can be no more than five Platonic solids. (There are
in fact exactly five: tetrahedron, octahedron, cube, icosahedron, and
dodecahedron. See figure 5.29a.) [H]

[D] After doing exercise 14, look at the object shown in figure 5.29b,
the "starlike dodecahedron" discovered by Johannes Kepler. It can be
viewed as a regular solid with twelve faces, each of which is a five-pointed
star. The faces meet at twelve vertices, five faces meeting at a vertex.
Shouldn't this count as a Platonic solid? Now go over your proof thát
there can be no more than five Platonic solids. What assumptions did
you make that will disallow the starlike dodecahedron? [HA]

Compute the total curvature of the basic flange (handle) by dividing
it into two bent-up rectangles and measuring the excess in each rectangle
(figure 5.30). You can compute the turning for the parts of the square
on the flange edges by remembering that that part is supposed to be
"planelike."

What is the total curvature of the "square with handle" shown in
figure 5.12? [A]

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Exploring the Cube

Of course, in one sense mathematics is a branch of
knowledgebut still it is also an activity.
Ludwig Wittgensteiri

We learned a great deal in chapter 5 about the geometry of surfaces in
general, but that is not at all to say that we know a great deal about the
geometry of any particular surface. This chapter and the following one
are meant to open up two worlds whose geometries are as interesting and
mathematically rich as plane geometry. The fact that these geometries
are much less well known than plane geometry makes them ideal areas
for your exploration.

Take on the role of explorer. Be daring but patient, look for inter-
esting phenomena, and try to make useful definitions and ask interest-
ing questions. (One deep question is worth more than many shallow
answers.) Formulate guesses and maybe some theorems. Can you prove
your theorems? Can you find useful new ways to look at these worlds?
Take your time; a good exploration is probably weeks long, even if you
concentrate on some small aspect of these geometries. Take a friend or a
group of friends along. Sharing ideas and explaining your special way of
understanding something or your method for accomplishing something
are as valuable as uncovering any particular "mathematical truth."

The next two chapters have a common format. We start with an
introduction to the geometric world. The first main section of the
chapter will give you some help in building a computer simulation,
which is perhaps the best tool for basic "brute force" experimentation.
The next section contains observations, questions, and suggestions for
problems to solve. Finally, we include a few answers and proofs. (Use
the last two sections sparingly. We have provided them only to help
out should your imagination get tired, or to show you other perspectives
once you think your own exploration is finished.)

Figure 6.1 shows the surface of a cube. As you can see, it is a
symmetrical surface. Topologically it is a sphere, but it is flat almost
everywhere. All the curvature is concentrated in the eight vertices. In
particular, no curvature is concentrated along any edge. To a turtle
walking on the cube, crossing an edge causes no difficulty whatsoever.
In fact, a two-dimensional turtle living in the cube's surface will not be

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

242

Corner or
vertex

Figure 6.1
A cube.

able to tell an edge from the middle of any face. To convince yourself
of this, remember that the turtle can only feel distances within its
two-dimensional world, and observe that a piece of surface does not
need to change shape in crossing an edge. Figure 6.2a shows how an
unstretchable "rug" can slide over an edge without being deformed
(changing distances). The edge is therefore no different intrinsically
from the flat part of a cube. Compare this with trying to push an
unstretchable rug around on a football, or over a vertex of the cube. Or
think of an edge as being a quarter of a very small cylinder, which has
no curvature (figure 6.2b). (Look back to the sections in chapter 5 on
cones and cylinders if you still think an edge should have curvature.)

So crossing an edge is no problem for a turtle. Convince yourself in
any way you can that a straight turtle path will continue on the other
side of an edge in such a way as to preserve the angle of intersection with
the edge, as shown in figure 6.2e. It is a good exercise to see how many
ways you can justify this equal-angle edge-crossing rule as the "right"
way for a turtle to cross an edge.

What happens to a turtle path that runs into a cube vertex? Unlike
edges, vertices have concentrated curvature, which makes it a bit difficult
to imagine equal-strided turtle walks through them. For example, paral-
lel turtle paths through points close to the vertex can go off in very
different directions. This suggests that there really may be no good
choice for how a turtle path should continue after hitting a vertex.
Perhaps the path should continue in a random direction, or even disap-
pear into oblivion. We will leave this for your consideration. Note that,
from the point of view of a cube-walking turtle, this issue is a minor

Edge

Foce

Exploring the Cube

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

(c)

Figure 6.2
(a) A sliding unstretchable "rug." (b) An edge as a quarter of a small cylinder. (c)
The equal-angle edge-crossing rule.

one. Running into a particular point like a vertex is such an unlikely
thing that you may well choose to ignore the possibility entirely.

What kinds of tools should you have to explore a cube? Naturally your
imagination is most important, but having a real cube is a big help. A
model cube big enough to draw on yet small enough to hold in your hand
would be ideal. Pencil and paper are good tools, too, especially if you
do to a cube what we did to the cone in subsection 5.2.4: cut it up and
lay it fiat, as in figure 6.3. But probably the most useful tool would be
a computer simulation of a cube with a turtle wandering around on its
surface. The following section gives some abbreviated but useful advice
for writing such a program. Read it even if someone else has written
a cube program for you to use. There are some important messages in
teaching a computer to walk a turtle on a cube. In particular, we will
take the time to discuss some of the design principles we used in earlier
projects but didn't mention explicitly.

Exploring the Cube 243

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

244

Figure 6.3
A cut-up, flattened cube, showing part of a turtle line.

6.1 A Computer Cube

Developing a computer cube is a large project, and it is best to start
out by dividing the task into parts. We'll follow the same strategy
that we used in chapter 3 when we implemented a three-dimensional
turtle. First, we'll forget about drawing things on a display screen and
concentrate on describing the state of a turtle walking on the cube. The
next step is to specify how this state is changed by the state-change
operators FORWARD and LEFT. The main problem here will be to figure
out how to determine when and where the turtle crosses an edge. Finally,
we'll worry about how to go from this internal representation to pictures
on a display screen.

6.1.1 Internal Representation

In writing a program to simulate a cube-bound turtle perhaps the most
important question is: How should the computer program represent the
cube? Though the kind of representation we're after is one that is good
for the computer and not necessarily good for you (in thinking about
cube problems), the representation we propose will turn out to be very
good for conceptualizing the cube's geometry.

Exploring the Cube

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

A Computer Cube 245

You might think that the simplest and most natural way to make a
computer cube is to start with a three-dimensional turtle and in some
way constrain it to the surface of the cube. But this method is clearly not
intrinsic; all of three-dimensional space is not relevant to the geometry
on a cube. And on reflection there are some difficulties. How do we
embody the constraints that restrict the turtle to the cube's surface? In
particular, the rotation of the turtle in crossing an edge at an oblique
angle is not a simple roll, pitch, or yaw. These are not grave difficulties,
but they encourage us to look for alternative representations.

Let's go back to secure ground. One thing our computer certainly
knows about is planar turtle geometry; it already knows everything
about walking and turning in a plane. But except for the vertices, a
turtle on a cube is always in one plane or another. So why not pretend
the turtle always stays in the same plane, even inside the same square?
Then we will just have to keep track separately of what face the turtle
actually is on. Think of it this way: We are looking through a window
at the cube (figure 6.4a). The frame of the window coincides with the
front face of the cube. A turtle walks on the front face. When it hits
the edge of the cube we just rotate the cube till the new face appears in
the window.

Crossing an edge amounts to just moving the turtle (parallel to an
edge) to the opposite edge of the window and remembering that we've
rotated the cube. (The process of sliding the turtle across the window
upon edge crossing is called wrapping. Standard computer display sys-
tems often do this kind of "wraparound" automatically.) There is no
need to worry about changing planes at all; that is automatically taken
care of merely by realizing we're on a new face. We also have a bonus: In
figuring out when the turtle changes faces, we have to check for crossing
only four edges (the window edges) rather than all 12 different edges of
the cube.

So a large part of the state of a turtle on a cube will be summarized
by two-dimensional position and heading "window coordinates" that
describe the turtle relative to the current face. If the turtle never crossed
any edges, then these window coordinates would be all we'd ever need
to worry about.

How should we keep track in the computer of what face the turtle is
on? More important, notice that we need to know more than just which
face we're on, because a face can fit into the window in four different
ways. Consider the path shown in figure 6.4b: The turtle can go up

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Start

(b)

Figure 6.4
(a) Walking on a cubethe window picture. (b) A trip that leaves the turtle at the
top of the window, but at the side of the first face.

o
Flip

'J
Flip

rRotateCube

Cross edge

Ji
Flip

246 Exploring the Cube

Wro p Continue

(a)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

A Computer Cube 247

across an edge, then right 90°, forward across another edge, and finally
right 900 again and across a third edge, to come back to the top of the
window, but the side of the first face. So what we really need is to keep
track of the whole "rotational state of the cube" behind the window,
not just which face is in the window frame.

Here is a good scheme for keeping track of the cube's rotational state:
Create a variable, or slot, for each place a face can occupy, FRONT, BACK,
TOP, BOTTOM, RIGHTSIDE, and LEFTSIDE. Now slip into each of those
slots the names of the initial faces that occupy them:

FRONT - "INITIAL.FRONT"

BACK 4- "INITIAL.BACK"

Whenever the turtle crosses a window edge, we merely shuffle the
contents of the slots in the way dictated by the particular edge crossed.
For example, in crossing the top edge, the face that was in the top
slot gets flipped down into the front position, the back face becomes
the new top, the bottom becomes the back, and the front face ends up
on the bottom. We can accomplish this by the following sequence of
instructions:

TEMP 4- FRONT

FRONT 4- TOP

TOP 4- BACK

BACK 4- BOTTOM

BOTTOM 4- TEMP

(The extra TEMP slot is needed to fix the standard "shuffle bug" that
always appears when we reorder variables. Compare with the YAW,

PITCH, and ROLL procedures in 3.4.3.) Notice that the face in the window
is always in the FRONT slot.

This may be the first time you have encountered this kind of symbolic
encoding of mathematical information, and it may take a while for you
to get comfortable with it. Right now you should make sure you believe
that all the information is there; given the current state of the FRONT,

TOP, and the other variables and the heading and position of the turtle
in the window, one does indeed know the position and heading on the
cube.

Another way to keep track of the rotational state of the cube is to
shuffle not faces, but vertices. If we label the cube's eight vertices as

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

248 Exploring the Cube

BACK 2

Figure 6.5
(a) Labeling vertices. (b) Numbering vertices.

shown in figure 65a, then flipping the cube when the turtle crosses the
top edge of the window corresponds to

TEMP FRONTi

FRONTi - FRONT2

FRONT2 # BACK2

BACK2 4- BACK1

BACK1 TEMP

TEMP 4- FRONT4

FRONT4 FRONT3

FRQNT3 - BACK3

BACK3 4- BACK4

BACK4 4- TEMP

When we consider the problem of drawing the cube on the display
screen, we will see that shuffling vertices turns out to be more convenient
than shuffling faces. Shuffling edges is another possible method, but we'll
stick with vertices in implementing the cube program. (Chapter 8 will
discuss another program, which uses the face-shuffling method.)

6.1.2 Permutations

Shuffling things around in slots is a standard mathematical operation
called a permutation. The above considerations show that the symmetry
rotations of the cube can be represented as permutations in several ways
(faces, edges, vertices). By numbering slots, we can represent a permuta-

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

A Computer Cube 249

tion simply as a list of numbers. For example, [2 6 7 3 1 5 8 4] is
interpreted as

the contents of slot 2 get moved to slot 1,
the contents of slot 6 get moved to slot 2,
the contents of slot 7 get moved to slot 3,
the contents of slot 3 get moved to slot 4,
the contents of slot i get moved to slot 5,
the contents of slot 5 get moved to slot 6,
the contents of slot 8 get moved to slot 7,
the contents of slot 4 get moved to slot 8.

So if we number the vertices of the cube as shown in figure 6.5b, then
crossing the top of the window permutes the vertices exactly as in this
example. Similarly, crossing over the right edge of the window invokes
the permutation [4 3 7 8 1 2 6 5]. As an exercise, write down the
permutations corresponding to the left and bottom edges of the window.

To keep track of how the vertices get shuffled, assign a permutation
to each of the four edges of the window corresponding to the flip made
when the turtle crosses that edge. Then develop a procedure called
SHUFFLE. VERTICES that takes as input the number of the edge crossed
and shuffles the contents of the eight slots according to the appropriate
permutation.

In net, the "coordinate system" we have chosen to represent turtle
state on a cube has two parts: the window coordinates (position, head-
ing), and a permutation (the shuffled vertices represent a net permuta-
tion of the initial configuration) that describes the rotational state of the
cube behind the window. State-change operators change both parts of
this state, and, in particular, one of four special permutations operates
on the rotational state when an edge is crossed. Note that with this
method we have avoided any reference to three-dimensional space.

6.1.3 Crossing Edges Using Dot Product

A problem that must be solved regardless of representation is this: How
do we know when the turtle has crossed an edge of the cube? We
have to check whether the line segment that is the turtle's intended
path intersects any edge of the window. So let's consider the following
general problem: Given two line segments in the plane (an "edge" and
an "intended turtle path"), how can we tell whether they intersect and
compute the point of intersection?

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 6.6
Two segments intersect.

As you might guess from our experience in chapter 3, vectors are a
useful tool for solving this problem. Let a and b be vectors running from
the origin to the endpoints of a given line segment. Then e = b - a
is the vector running from a to b, and the line segment itself is the
set of points represented by a + Xe where X (a number between O and
1) specifies the fraction of the way from a along e the particular point
is. In our application, a and b will be the endpoints of an edge of the
window, and e the edge vector itself. Similarly, if the turtle's path is
the vector t running from p to q (that is, if t = p - q) then the points
on the path are given by p + t where j is between O and i (figure 6.6).

Now, if the two segments intersect, this can be expressed by

a+Xe=p+t. (1)

What remains is merely to solve this equation for X and and check that
they are both between O and 1. (See exercise 4 of this section.) This
looks like one equation with two unknowns, but think for a moment:
The vector equation implies a numerical equation for each component.
One could write out these two equations, but there is an even better way
to obtain the solution, which goes along with the vector philosophy of
using intrinsic descriptions and operations.

Algebraically speaking, we want to eliminate one of the unknowns,
say X, from equation 1. We can do that by looking at the component
of the equation in the direction perpendicular to e. Since e itself has no
such component, it and X will both disappear from the equation. You
can think of this operation as setting up coordinates parallel and per-
pendicular to e and looking at the perpendicular component. Projecting
both sides of the vector equation onto a line perpendicular to e amounts
to the same thing.

250 Exploring the Cube

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

A Computer Cube 251

Dot product (subsection 3.5.2) and the Perp operation (subsection
3.2.2) are precisely the algebraic tools we need to carry out this projec-
tion easily. We take the dot product of Perp(e) with both sides of our
intersection equation:

Perp(e) (a + Xe) = Perp(e) (p + pt).

Using linearity and the fact that Perp(e) e O we can solve for :

Perp(e) a + XPerp(e) e Perp(e) p + Perp(e) . t

Perp(e) - a = Perp(e) p + Perp(e) . t
Perp(e) (a - p)/2-

Perp(e).t

Because of the symmetry in the intersection problem we can solve for X
by interchanging a with p and e with t:

Perp(t) (p - a)
3- Perp(t) e -

Equations 2 and 3 give a quick and simple way to solve for X and .

If both are between O and 1, an intersection has occurred at the point
p + pt (or a + Xe, which is the same).

We can implement these formulas in a computer procedure called
CHECK. EDGE, which takes as inputs the two endpoints of a window edge
and the two endpoints of the turtle's path (each of these points should
be expressed as a vector):

TO CHECK.EDGE (EDGE.START, EDGE.END, TURTLE.START, TURTLE.END)

P - TIJRTLE.START

A - EDGE.START

E i- EDGE.END - A

T TURTLE.END - P

MU DOT (PERP (E), A - P) / DOT (PER? (E), T)

LAMBDA DOT (PER? (T), P - A) / DOT (PER? (T), E)

IF BOTH (BETWEEN(MU, 0, 1), BETWEEN (LAMBDA, 0, 1))

THEN

INTERSECTION 4- P + },flJ * T

FRACTION MU

RESULT 4- "INTERSECTION FOUND"

ELSE RESULT 4- "NO INTERSECTION"

The procedure checks whether the turtle's path intersects the edge, and
sets a variable called RESULT to indicate whether or not an intersection

(2)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

252 Exploring the Cube

occurred. If there is an intersection the procedure sets variables that give
the point of intersection and the number , which specifies the fraction
of the turtle path that was traversed before the intersection occurred
(see exercise 1). This procedure uses the PERP subprocedure, as given in
subsection 3.2.2, and also a procedure that takes two vectors as inputs
and outputs the dot product:

TO DOT ([VX VY], [WX WY])

RETURN (VX * WX) + (VY * WY)

In addition, a simple BETWEEN subprocedure is used to tell whether a
number lies within a specified range.

The complete solution to the edge-crossing problem can now be given
by a procedure called CHECK. INTERSECT IONS, which takes as inputs the
turtle's current position and the endpoint of the path:

TO CHECK.INTERSECTIONS (POSITION, ENDPOINT)

REPEAT FOR I = i TO 4

CHECK.EDGE (EDGE.START(I), EDGE.END(I), POSITION,

ENDPOINT)

IF RESULT = "INTERSECTION FOUND"

THEN

EDGE.HIT 4- I

RETURN

This procedure uses CHECK. EDGE to see whether the path crosses any of
the edges. After the procedure is run the variables RESULT, INTERSECTION,
and FRACTION can be examined by other procedures to determine whether
an intersection occurred, and, if so, where. Also, the variable EDGE . HIT

specifies which edge was intersected. (In order for this CHECK. INTERSEC-

TIONS procedure to work, you need to supply subprocedures EDGE. START

and EDGE . END that output the endpoints of the appropriate window
edges.)

Note that the RETURN statement in the last line prevents the CHECK. IN-

TERSECTIONS procedure from going on to try the next edge if an inter-
section is found before the last time through the ioop.

6.1.4 Implementing the State-Change Operators

Now that we know how to tell if the turtle crosses an edge of the window,
let's get on to the problem of moving around generally on the cube.
This entails specifying the state-change operators FORWARD and LEFT

(and their "opposites" BACK and RIGHT) with respect to the internal
representation (the window position and heading and the permutation).

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

A Computer Cube 253

We must say how each state-change operator modifies these quantities.
Turning the turtle with LEFT and RIGHT is a simple operationjust let
the heading change as usual.

To implement FORWARD, start by letting p be the position of the turtle
in the window. If the turtle is to go a distance D, first try the full
distance, ending at q. Now we need to know whether q is inside or
outside the window. This can be done with the CHECK. INTERSECTIONS

procedure above. If there is no intersection with any of the edges, then
we're done; the turtle's end position is q. If there is an intersection,
then INTERSECTION = p + 1tt tells where to go on the current face, and
FRACTION = determines how far the turtle needs to go on the new
face: Dnew = (1 -)D.

More explicitly, here's what to do when there is an intersection:

Step i Move the turtle from the current window position p to the
intersection point p + ¡it. (If we're drawing the turtle's path on the
display, we should also draw a line between the corresponding points on
the display screen. We'll discuss how to do this in subsection 6.1.5.)

Step 2 Wrap the turtle across the window to the opposite edge. Alge-
braically, this entails adding or subtracting the length of the window
edge from the turtle's x or y coordinate. (This part of the path doesn't
get drawn, of course.)

Step 3 "Rotate" the cube by shuffling vertices according to the permuta-
tion associated with EDGE. HIT, the window edge that the turtle crossed.

Step 4 Now go back and repeat the entire FORWARD process with the
turtle starting out from the window position computed in step 2, and
going forward a distance (1 -

6.1.5 Displaying the Cube; Capitalizing on Linearity

We have left for last the problem of displaying the lines drawn by
the turtle on our cube. The problem may seem difficult because of
our decision to represent a position on the cube by x and y "window"
coordinates together with the rotational state of the cube, which is
remembered as a permutation of vertices. Wouldn't it have been easier to
use three-dimensional vectors all along, so that the display could proceed
using the projection procedures of chapter 3? Surprisingly, despite our
peculiar internal representation, display will not be hardand as a bonus
we'll get another look at the power of linearity.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

ae
r.,-- ________
L)

e

M (s)

ovz!)
M(e)

In computers 'head' On display screen

(d)

Figure 6.7
(a) Cube on a display screen. (b) The map from window to display. (e) Vertices are
mapped to vertices. (d) Mapping along an edge is easy.

254 Exploring the Cube

(a)
Map

Window

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

A Computer Cube 255

(f)

s+ae1+ße2
-

A
¡3e2

ae1

M(e1) M(s2)M(S1)

M (s) + a M (e) + ¡3M (e2)

ßM(e2)
44

M (s)y"9' a M (e1)

Figure 6.7 (cont.)
(e) Linearity! (f) Edges are the differences between vertices.

Imagine you have the cube drawn on the display in the usual perspec-
tive way, with parallel edges drawn parallel on the screen as shown in
figure 6.7a. Now assume that the cube-simulation program knows where
the turtle is in the window frame and which permutation describes the
cube. The problem is to map (translate) the position on the window to
the appropriate point ou the display cube, as shown in figure 6Th.

Notice that this mapping is from a plane (the window) to a plane
(display screen). There is no hint of three dimensions as with the
projection in chapter 3. What else do we know about that mapping?
Certainly vertices get mapped into vertices (figure 6.7e). And if you're

percent of the way from one vertex to another in the window, it is
reasonable (and true) that you should be a percent of the way on the
display cube as well. In vectors, if you are at s + ae, where s points to
the start of the window edge and e is the window edge vector, and if
M(s) and M(e) stand for the "mapped" vectors on the display screen
(figure 6.7d), then s + ae is mapped into M(s) + aM(e), or

M(s + ae) = M(s) + aM(e).

(e)

/' M(e)

M(s)
M(s2)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

256 Exploring the Cube

Even better, if the turtle is in the interior of the window at some point
s + ne1 + ¡3e2 (figure 6.7e) then the corresponding point on the display
screen is

M(s + ne + 13e2) = M(s) + aM(ei) + /3M(e2). (4)

In other words, the mapping M from window coordinates to display
screen is a linear mapping. Consequently, the components ne1 and ¡3e2

can be mapped independently and then added. To apply this formula
we must know the mapped positions of the vertices, M(s), and the
mapped edges M(ei) and M(e2). (In fact, knowing just the vertices
is enough, because the edges can be determined as the vector differences
of the vertices, as shown in figure 6.7f.) Can our internal representation
tell us those vertices? Yes. Suppose that what gets shuffled around in
the vertex slots are the (x, y) coordinates on the display screen of the
appropriate vertex, that is, each M(s) in x and y coordinates. Then the
mapped vertex positions that we need will be found precisely in the slots
FRONTI, FRONT2, FRONT3, and FRONT4 (or in slots i through 4 if we use
slot numbers rather than slot names). This is why we chose to shuffle
vertices in constructing the representation of the cube in 6.1.1.

You might as well simplify things by setting up the window coordinates
so that (O, O) corresponds to the bottom left corner of the window.
That way a and ¡3 are just the window x and y coordinates divided
by the length of the window edge. We have thus reduced the problem
of locating display points to terms that appear in the representation:
window coordinates (i, y) and the vectors contained in the vertex slots
FRONTi through FRONT4, each of which represents a vertex position on
the display. As a vector equation we have

DISPLAY = FRONTi + a(FRONT4 - FRONTi)

+ ß(FRONT2 - FRONTi).

We can implement this formula in a procedure that takes as input a
vector whose components are the (x, y) window coordinates of a point,
and outputs (in vector form) the coordinates of the corresponding point
on the display screen:

TO DISPLAY.COORDS {X Y]

EDGE1 i- FRONT4 - FRONTi

EDGE2 - FRONT2 - FRONTi

ALPHA i- X / LENGTH (EDGE1)

BETA i- Y / LENGTH (EDGE2)

RETURN FRONTi + (ALPHA * EDGE1) + (BETA * EDGE2)

(5)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

A Computer Cube 257

6.1.6 Summary Outline of the Cube Program

Step i Draw your display representation of a cube, making sure to keep
parallel cube edges parallel on the display. Store the display x and y
coordinates of each vertex in the appropriate variable slot FRONTi,...,

FRONT4, BACK1,..., BACK4.

Step 2 Use equations 2 and 3 and the procedure given in subsection
6.1.4 to walk a turtle around on the cube, making all computations with
respect to the internal representation.

Step 3 Use formula 5 to find the position of the turtle on the display
screen.

We can combine steps 2 and 3 into a single FORWARD procedure. (We
assume below that heading is kept as a vector.)

TO FORWARD DIST

ENDPOINT *- POSITION + DIST*HF.ADING

CHECK. INTERSECTIONS (POSITION, ENDPOINT)

IF RESULT = "NO INTERSECTION"

THEN FORWARD. WITHIN. FACE (ENDPOINT)

ELSE FORWARD. ACROSS . EDGE

The FORWARD procedure uses CHECK. INTERSECTIONS (6.1.3) to deter-
mine whether the turtle's path intersects any edge of the window. If not,
it simply moves the turtle to the point on the screen that corresponds to
the endpoint of the path and resets the turtle's current position to this
new location:

TO FORWARD.WITHIN.FACE (NEW.POSITION)

MOVE. TO (DISPLAY. COORDS (NEW. POSITION))

POSITION - NEW.POSITION

(This procedure uses a simple MOVE. TO subprocedure, which places the
turtle at the appropriate point on the screen and draws a line from the
current position if the pen is down.)

When the path does cross an edge we proceed as described in 6.1.4,
first moving to the intersection point, then wrapping across the screen,
shuffling the vertices, and going FORWARD the remaining distance:

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

258 Exploring the Cube

TO FORWARD.ACROSS.EDGE

FORWARD. WITHIN. FACE (INTERSECTION)

POSITION WRAP (POSITION)

SHUFFLE. VERTICES (EDGE. HIT)

FORWARD (DIST * (1 - FRACTION))

All the restdrawing the cube and turtle in perspective, maintaining
a HEADING vector, providing and keeping track of a pen for drawing lines,
and making dotted lines for lines drawn on the back of the cubewe
leave to you.

Once you have a working cube, you may want to try some variations.
For example, vary the display part of your cube so that it looks like
figure 6.3. This should be very easy; all you need do is to permute the
14 vertices shown on that figure rather than the 8 in the perspective
drawing. Do you find this display useful?

6.1.7 Comments on the Cube Program

The above discussion of the program was not just to help you write
an efficient simulation. It brings out some essential points, both about
mathematics and about programing.

Representations
Note how rich is the issue of selecting the computer's internal repre-
sentation of the cube. In particular, the representation chosen above
takes advantage of thinking of a cube as one face (with wrapping)
together with a group of permutations. The permutations are easily
handled, and the turtle motion on one face is also very simple. This has
advantages over the obvious three-dimensional representation: We avoid
three-dimensional rotations altogether. Heading changes only when a
turtle turn command is given. In the "window representation" the
method for display is carried out almost trivially because of linearity
and the fact that vertices are chosen as permutation elements. Finally,
the problem of checking whether a turtle segment crosses an edge entails
examining only four fixed edges of the window rather than four of the
twelve different edges of the cube. There is also a conceptual advantage
im thinking of a cube in this way, one face and rotations. This may
not be apparent yet, but in later sections of this chapter we will use
this representation to demonstrate some remarkable facts about cube
geometry. Beyond our particular concerns here, the general scheme of
forgetting about the nonidentity of similar parts (for example, using one
"window" instead of six faces of the cube) and keeping track separately

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

A Computer Cube 259

\

\

Figure 6.8
Cube in perspective, with vanishing point.

how the parts are shuffled is a potent mathematical technique. The
"window picture," as we will call this representation, divides the state
of the turtle into two parts: the window state and the rotational state.
The remarkable observations to come arise out of the fact that these two
parts of the state often change independently.

Linearity
Our method of displaying lines on the cube gives a good image of
the meaning of linearity and of its power of simplification. The linear
mapping from computer window to display screen allows us to map every
point if we know only where the corners of the window are mapped. Even
changing the map so that it is nonlinear by using a vanishing point to
draw the cube in perspective (figure 6.8) is not a difficult perturbation
of the linear case.

Intrinsic or Invariant Methods
Vectors provide an improvement over bare-bones analytic geometry by
eliminating the need for coordinate systems, or at least leaving the choice
of a coordinate system until near the end of the solution, when coor-
dinates can be chosen in a more appropriate way than might be evident
at the onset. Furthermore, vectors carry along meaningful entities, such
as e =edge vector and X =proportion of distance along edge, rather
than just coordinate numbers, which depend as much on how you select
coordinates as on the meaning of the quantities involved. Also, vectors

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

260 Exploring the Cube

have operations, such as dot product, that support algebraic manipula-
tions while retaining geometric meaning. Linking geometric with al-
gebraic operations gives alternate and often helpful views. Finally, and
this is not to be scorned, vector equations handle several component
equations at once, and mean less writing and fewer chances for mistakes.
(As an exercise, go back and do the edge-intersection problem using
analytic geometry, without vectors.) In summary: Think geometrically,
and compute with vectors.

Modular Planning
Notice that the three main problems we selected for studyinternal
representation, edge crossing, and displaywere tackled independently.
This kind of modular planning is an excellent heuristic method for
undertaking any programing project. It is generally necessary in large,
complex projects. Only after you have fleshed out the separate parts
is it time to make decisions about interactions between the parts, such
as choosing the internal coordinates to be Cartesian rather than polar
to help with display considerations, or choosing to permute vertices
rather than faces, or using vertex coordinates rather than vertex names.
These interactions can often force you to modify your original plan,
but interfacing the subplans is generally fairly easy, and in this case
positively rewarding (for example, much of the display work can be done
with the internal cube representation).

Modular Programing
The computer implementation of the program should reflect the modular
plan. For example, designing the FORWARD command to operate in the
internal representation, as in 6.2.4, means that the command can be used
independently of the particular way of displaying the cube. Moreover,
our presentation suggests some building blocks that can be used on
the way toward the final cube program, such as a general method for
handling permutations (exercises i and 2) and routines for dot products
and vector arithmetic. Not only do these building blocks make im-
plementation of the cube program easier by encouraging a modular ap-
proach, but they can also be useful in creating similar programs (see
exercise 5). Finally, the fact that separate but meaningful programs
such as CHECK. INTERSECT IONS are written independently means that
these parts can be checked out by themselves before you run the main
program, which improves the probability that the whole program will
work and simplifies debugging if there is a problem.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

A Computer Cube 261

Exercises for Section 6.1

The main exercise for this section is, naturally, to implement the turtle
geometry cube as described above. The following questions suggest some
extensions and variants of this project.

There is a bug in the CHECK.EDGE procedure of 6.1.3: We might
attempt to divide by zero in computing X and i. What does this mean
geometrically, and how should the procedure be modified to avoid the
bug? [A]

[P] We have seen how crossing an edge leads to a shuffling of the vari-
ables FRONTi, FRONT2, etc. This shuffling can be realized as a sequence
of assignment statements, as illustrated in 6.1.1. Writing down such a
sequence is not much of a problem when there are only a few different
permutations to keep track of. (There are only four to worry about in
the cube program). But this method becomes cumbersome when one
wants to shuffle things according to an arbitrary permutation. A better
strategy would be to keep the things to be shuffled in a list and then reor-
der the list according to a given permutation. Write a SHUFFLE procedure
that takes two inputsa list of items and a permutation (represented as
a list of numbers, as explained in 6.1.2)and outputs the list of items
reordered according to the permutation. (Beware of the "shuffle bug.")

[P] In keeping with exercise 2 you may wish to redesign the cube
program so that, instead of variables FRONTi, FRONT2, etc., there is a
single list, VERTICES, that contains the vertex coordinates. The proce-
dure SHUFFLE. VERTICES can then reorder this list using the SHUFFLE

procedure of exercise 2. Show how to rewrite the other pieces of the
cube program to use the VERTICES list rather than the FRONTi, FRONT2,

etc., variables.

[P] Suppose you take a normal POLY figure and collect the sides as
vectors. If you draw the sides in sequence you'll obtain the POLY figure,
of course. But suppose you first shuffle the sides according to some
permutation. We'll call this a "permuted POLY." Write a procedure to
draw permuted POLYs and study these figures. Do you see why they are
closed?

We saw how solving for X and ji using equations 2 and 3 of subsection
6.1.3 provided a way to determine whether two line segments intersect:
The intersection occurs if and only if X and ,u are both between O and
1. What is the geometric interpretation of other values of X and ? For

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

262 Exploring the Cube

example, what would it mean if you solved the equations and found that
X = 1 and = 4? [A]

6. [P] Many of the techniques we developed for building a cube program
carry over to a program to enable the turtle to crawl around on a
regular tetrahedron. Describe the modifications to the cube program
that will change it into a tetrahedron program. For example, what are
the permutations corresponding to the three edges of the window?

6.2 Observations and Questions About Cubes

DO NOT READ THIS SECTION until you have played around a bit
with geometry on the cube.

6.2.1 Monogons

There are no one-sided closed polygons in a plane. On the cube, however,
monogons are a diverse and interesting class of figures. The simplest
monogons may well be called "equators." As shown in figure 6.9a, there
are at least two equators through most points on a cube. Find a third
monogon through an arbitrary point on the cube. ("Arbitrary" excludes
vertices, edges, and maybe the centers of faces, all of which are clearly
not arbitrary.) Find all monogons through a given point. Notice that
each of the equators in figure 6.9a lies in a plane. Is this true for all
monogons? Classify monogons. What are good classification schemes?
Prove that any example you have really is a monogon, rather than a
path that just comes close to closing. The general monogon problem
can be phrased like this: If the turtle starts out somewhere with some
heading and walks straight, under what conditions will that eventually
make a monogon? How does this depend on heading and starting point?
Classify exceptionsfor example, starting from nonrandom places on
the cube.

In your search for monogons you will quickly discover a different kind
of monogon: one that comes back to its original position but not its
original heading, as shown in figure 6.9b. Such a monogon may be called
an irregular monogon. What do you notice about the way irregular
monogons close? Prove your conjecture. Note that a monogon cannot
close with the turtle facing opposite to its initial heading (see figure
6.9e). Prove this.

An irregular monogon, if extended, may turn into a regular monogon
with crossings (figure 6.9d). Such monogons are like star polygons, in

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Observations and Questions 263

(a)

(e)

Starting out

(d)

Figure 6.9
(a) Two equators through an arbitrary point. (b) An irregular monogon. (c) An
impossible "reverse trip" monogon. (d) A starry monogonfigure (a) extended.

that they have crossings. We will call them "starry monogons." They
should not be neglected in the search for regular monogons. Is there a
longest regular monogon? Is there a longest nonstarry regular monogon?

In looking for regular monogons you may decide that any turtle walk,
if extended far enough, will close, or at least come very close to closing.
However, you should be able to find a line that you know will never
close to form a regular monogon. Show also that any such nonclosing
path must intersect itself. These two problems are not very difficult,

(b)

Ending up

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

264 Exploring the Cube

but consider on the other hand the following conjecture: Every straight
turtle line will, if extended far enough, come as close as you wish to its
starting point, and may in fact close. In other words, if a turtle leaves
a small spot at its starting point and walks straight away, it will always
eventually run into the spot, no matter how small the spot is.

You may wish to catalog the lengths of regular monogons and look
for surprising regularities.

6.2.2 POLY

The POLY program does interesting things on the cube. Play with it. For
example, investigate "squares," that is, POLYs with 900 angles. Note that
some squares become starry, which can't happen in a plane. How many
sides do such squares have? Look for pretty or unusually symmetric or
asymmetric squares. Can a square have two or three sides? How about
five sides?

All POLY5 that close in a plane also seem to close on the cube, only
they may have a different number of sides. This is an excellent medium-
hard theorem to try to prove. (Give it at least a week.) You may want
to study general fixed instruction programs on the cube.

6.2.3 Other Gons

How about bigons? Are they interesting creatures? Or should one let
bigons be bygones?

Can you find a right equilateral triangle, or a right equiangular non-
equilateral triangle? What are the restrictions on the sum of interior
angles of a triangle? You will find, in particular, triangles with 2700 of
interior angle. Can this 270° be distributed in any possible way among
the three angles? In a plane the 180° of interior angle can be distributed
arbitrarily, but this may not be true on a cube for non-180° triangles.
Does the size of the triangle affect what shapes are allowed? On a plane,
size doesn't matterhence we have the usual theory of similar triangles
ignoring size. (Perhaps in your studies you will want to omit starry
triangles.)

Circles (that is, POLYs where both distance and angle are small) are
good objects to study on a cube. Do circles have centers? How about
the radius of a circle? Recall (section 1.1, exercise 2) that one can define
a radius without reference to a circle's center as the radius of curvature,
equal to the distance traveled divided by the angle turned. What values
can the ratio of circumference to radius of curvature have on a cube?

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Observations and Questions 265

Endpoint underneath

Figure 6.10
A shortest distance.

6.2.4 Lines and Distance

How many turtle lines are there connecting any two points on the cube?
Are there exceptions to the general rule? Is one of those straight lines
guaranteed to be the path of shortest distance between the two points?
If you think you know an algorithm to find the path of shortest distance
between any two points, consider the example shown in figure 6.10.
Explore the analog of the Pythagorean theorem on the cube. Perhaps
you will want to start with equiangular right triangles.

6.2.5 More Projects

Can you formulate a maze problem on the cube, as in the discussion of'
the Pledge algorithm in chapter 4? Will the Pledge algorithm itself work
on the cube? If not, is there a modification of the algorithm that will
work? If not, is there a modification of the maze problem that does have
a Pledge-type solution? Consider also the cube analogs of the theorems
on the topology of plane curves discussed in chapter 4.

Try out the cubical versions of the random-walk procedures of section
2.1:

TO RANDOM.MOVE (Dl, D2, Al, A2)

REPEAT FOREVER

LEFT RAND (Al, A2)

FORWARD RAND (Dl, D2)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 6.11
Line of sight on a cube.

After a long time (say, long enough so that the average distance traveled
is many times around an equator), is the turtle equally likely to be
anywhere on the cube, or it be more likely to find itself near a vertex (for
example) than near the center of a face? Can you devise an experiment
to find out? Can your prove your conjecture?

Is the program

TO LEAP

SETHEADING RAND(O, 359)
FORWARD 10000

a good approximation to a random walk? That is, do the points found
by LEAPing over and over from the same starting point seem to be
distributed over the cube like the endpoints of random walks? Note
that on a plane such a program would have all of its endpoints on a
circle. In fact, one might still think of the set of points reachable by
going FORWARD some fixed distance as a "circle." But to distinguish it
from a POLY circle (it is different on a cube), call it a radial circle. Is
there an interesting theory of radial circles as the radius varies from O
to infinity? (Radial circles break up into many pieces as the radius gets
larger. The circumference of such a circle will have to be defined as the
sum of the lengths of the pieces.)

266 Exploring the Cube

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Observations and Questions 267

6.2.6 Things to Think About

One very foggy morning, the turtle looks out into the distance on the
cube. The turtle can see only a distance of about one edge length, so
the only vertices it sees are the four corners of the current face. (Never
having decided what to do if it should run into a vertex, the turtle
sees them as ominous black holes.) As the fog begins to lift and the
turtle can see farther, it sees four more vertices, the remaining ones of
the cube. (Remember, the turtle's universe is the surface of the cube,
and even light rays travel on it. See figure 6.11.) The fog thins some
more and turtle sees another set of four vertices dimly in the distance.
Which vertices are these? Thinner and thinner fog brings more and more
vertices! The turtle begins to wonder if, when the fog finally clears, there
will be a vertex in every direction. Show that on a clear day when turtle
can see forever, it will see an infinite number of vertices, and indeed will
detect vertices in almost every direction; however, there will still remain
directions in which there are no vertices. Also, between any two "vertex
seeing" directions there will be a direction with no vertices (and vice
versa).

DANGERThe next section contains "premade" (already discovered)
mathematics. It may be harmful to your imagination and should be used
only as a last resort. TURN THE PAGE AT YOUR OWN PERIL.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Equilateral right triangle and three-sided A 45° equator.
square.

A short regular monogon, O = arctan 3. A longer regular monogon, O = aretan 11.

Figure 6.12
Some interesting figures on the cube.

6.3 Results

Figure 6.12 gives some pictorial results. We invite you to study it.

6.3.1 The Monogon Problem

Theorem A turtle line can intersect itself only at right angles. Segments
of the same line that appear on a given face can have (window) heading
only O, O + 90°, 0 + 180°, or O + 270°.

268 Exploring the Cube

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Results

A nonclosing turtle walk. A 12-sided square.

269

A POLY circle; FORWARD a bit, RIGHT a bit,... A radial circle, points equidistant from a
Circumference= 67rr. center. Circumference= 2rr.

Figure 6.12 (cont.)

We give three different proofs of the first statement. The second state-
ment follows easily from the first.

Excess method The cube's curvature is concentrated at its vertices; 4ir
total curvature (remember, the cube is topologically a sphere) distributed
among eight identical vertices makes 7r/2 = 900 at each vertex. Hence:
Observe the part of a turtle path between times when turtle is at the
point of the first self-intersection. There is no turtle turning, so any
change in heading must be trip turning (excess, that is, curvature con-
tained within this closed circuit). But curvature comes in lumps of 900,
so the difference in heading must be a multiple of 900.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

270

b)

Final turtle (some heading)4/'

Initial turtle

/

Cube
rotated

I
4"

I

Exploring the Cube

Figure 6.13
(a) Crossing an edge in the window picture. (b) A face can appear in the window in
four different ways.

Window method Recall the window method of imagining a turtle walk
on a cube, which was the basis for the computer's internal representation
of the cube in section 6.1. One always sees the turtle walking in a single
window with the rest of the cube behind. When the turtle reaches the
edge of the frame, the cube rotates behind the frame to keep the turtle
in the window (see figure 6.13a). In going forward without turning, the

Turtle at edge Turtle wraps to
of window bottom of window

(a)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Results 211

ç;?

Turtle starts

next card laid down

Figure 6.14
The card picture.

reaches edge of card

First card picked up, showing ink mark
underneath

turtle never changes its heading as seen in the window. So if the turtle
ever returns to the starting face it will have the same window heading.
But the actual face, which can fit into the window in four different ways,
may have rotated underneath the turtle by some multiple of 900 from
the initial state (see figure 6.13b). Thus, the relative heading from start
to finish must be some multiple of 900.

Card method This variant of the window view of cube walking adds its
own insight to many cube problems. Imagine the faces of a cube as cards
cut apart, but with edges labeled to show how they fit together. Lay
down the starting face and start the turtle walking. Draw the turtle line
with ink that penetrates to the table underneath the card. When turtle
gets to the edge of the card, carefully lay down the new connecting card
in the appropriate way. Now pick up the first card and continue. (See
figure 6.14.) Clearly, the line on the table top will always keep the same
heading. If the first card is ever laid down again it will be in one of
four orientations, differing from the original by a multiple of 90°, and
the continuation of the turtle line onto it will be at that multiple of 90°
fróm the original heading of the turtle.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

272 Exploring the Cube

Notice that the translation from card picture to window picture merely
involves having the window follow the current card, like a mobile TV
camera.

It is impossible to define a heading on a cube in the usual 0°-to-360°
wayat least, it is impossible if you want heading to change only when
a RIGHT or a LEFT command is given. The impossibility is demonstrated
by the existence of turtle lines that, because they do not have any
turning, shouldn't change heading, but do cross themselves. But the
above theorem says there is a sort of heading if you are willing to put up
with 900 ambiguity: If your compass needle has four indistinguishable
arms at 900 to each other, and four norths, then walking straight around
on a cube will never change your heading. Examine the compass in
figure 5.10. That may be an unconventional compass, but it's better
than nothing.

6.3.2 Headings for Monogons

Theorem Any regular monogon must have a heading with a rational
tangent.

Proof Look at the "card" picture of walking along a regular monogon
from the starting point to the return to the starting point (figure 6.15a).
If the path is to close regularly (that is, wind up with the same heading
it started with), then the final card must be the same as the initial card
and also must have the same orientation. From the figure, though, one
sees that tanO = p/q, which is a rational number. As a corollary, if
tan O is irrational then the above picture cannot be achieved, and the
turtle's path will never close.

A converse theorem If the tangent of the heading is rational, then the
turtle line will close to form a regular monogon.

Partial proof If tan O = p/q, the above card picture shows what happens
in the first \/P2 + q2 cardlengths of walking. But there is no guarantee
that the card at the end of such a trek is the first card. To make progress
we must change our view from the card method to the window method.
Translating from the card method, we can see that in the window the
turtle will appear at the initial position (and heading) after a trek of
/p2 + q2 cardlengths. But each wrap has flipped the cube around, and

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Results 213

Figure 6.15
(a) A straight line in the card picture. (b) A POLY in the card picture.

the face now showing may not be the same as the first, or it might be
the first but not in the correct orientation. To summarize: The turtle
traveling along a heading that has a rational tangent will close its path
as far as the window part of the position state is concerned, but may
undergo a net cube rotation, causing the permutation part of the state
to be different.

Now consider the net flip made by the cube behind the window. If
the turtle continues walking for another \/p2 + q2 distance, the cube
will undergo the same flip again. And then again. And again. Is it
possible that the cube can be flipped again and again in the same way
and never return to its initial position? If the cube ever did return to the

q cardlengths

p cardlengths

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

274 Exploring the Cube

initial position, that would make the turtle's path close. The possibility
that each of a whole infinite sequence of flips could fail to restore the
initial position of the cube is even more unlikely in view of the fact that
there are only 24 possible cube positions to choose from. A proof that
a sequence of identical rotations must eventually return the cube to its
initial rotation state is given in the next subsection.

6.3.3 POLYs and Other Looping Programs

Theorem Any turtle program that closes in the plane will close on a cube
(if repeated enough).

Proof Run any turtle program on a cube. Notice that the path drawn
on the table in the card view is just the path the program would draw
when run on a plane (figure 6.15b). So we see that a planar closing
program will draw a path in which the window part of the turtle's state
will come back to its initial state after a single run of the program.
Unfortunately, we have the same problem as with the monogons above:
The final card may not be the same one in the same orientation as the
first card. In other words, the cube may have rotated away from its
initial state behind the window.

The saving fact is that repeating the program over and over performs the
same rotation on the cube again and again. If the initial cube orientation
is eventually restored, then at this point the program will have closed
on the cube. So to finish the proof of the theorem, and of the theorem
in 6.3.2 we must prove the following lemma:

Lemma If a given symmetry rotation (the "net flip") is performed over
and over, the initial rotational state will eventually be restored.

You should recognize this as an example of a finite-state process, such as
encountered in subsection 4.4.3. But now we need a bit more information
than that the process winds up in a loop. We need to know that the
loop includes the initial state.

Proof The key idea is that the same rotation is applied over and over,
so if the cube ever finds itself in some given state twice, the sequence of
subsequent rotational states must be the same. Not only that, but the
preceding sequence must also be the same, because applying the inverse

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Results 275

rotation to a given state always does the same thing: It results in the
same (previous) state. More precisely, imagine the sequence of states all
laid out in a row:

S, S2, S3, S4.....

Each state is obtained from the preceding one by applying the same
fixed "flip." Eventually some state must repeat, because there are oniy
24 to choose from. Hence, S = Sn+m for some n and m:

Si, . . ., Sa_1, Sn, Sn+1, .. ., Sn±m_i, Sn+m, Sn+m+i.....

But now applying the inverse flip to Sn Sn+m shows that Sn_i must
be the same as Sn+m_i:

Si,.. ., Sa_1, Sn, S±i,.. ., Sn±m_i, 5n+m, Sn+m+i

For the same reason, Sa_2 = Sn+m_2. Sliding this equality of states
to the left, one step at a time, we arrive quickly (in fewer than 24 steps)
at S1 = S12.

You can easily show that m < 24. In fact, with a good deal of work
you can show that m < 4 for any flip, and so we have the following:

A Truly Remarkable Theorem Any looping program that closes in the
plane will close on the cube, but it may take as much as 4 times as long.

Find programs that close in 1, 2, 3, and 4 times their planar closing
runs. Isn't it remarkable that the number 4 is associated with cubes in
this way, rather than, say, 6 (the number of faces)?

In summary: Any program that closes in the plane will, when run
once, return the turtle to the same window state, but may rotate the
cube. However, repeating the program at most 3 more times will return
the cube to its initial rotational state, and will thus return the turtle
to the initial position. By the same reasoning, any turtle line with
heading satisfying tan O = p/q (where p/q is a fraction in lowest terms)
will form a regular monogon whose length is between /p2 + q2 and
4./p2 + q2 times the sidelength of the cube. Notice that monogons with
headings of Oj (where tan 01 = 2) and 02 (where tan 02 = 2.000000001 =

which are very nearly the same angle, close in vastly different
lengths.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

276

G

F
F

JJ *

8B

*
H I A

(e) Sides labeled the same get glued together.

Figure 6.16
Another dissection of the cube.

6.3.4 Another Representation

Notice that a cube can be cut up into cards in another way than that
shown in figure 6.3; it can be cut up as shown in figure 6.16a. Figure
6.1Gb shows how to fold this collection of cards into a cube by showing
some "usual" edges in dotted lines. In this representation it is clear that
edges are "fiat." Figure 6. 16c shows a 45° equator in this representation
of a cube. Does this make it easier to see that all 45° equators are the
same length? Did you discover that fact? (If you didn't, be sure to
measure the lengths of other monogons with the same cube heading)

6.3.5 Another Representation Revisited

Suppose you happen to be an excellent billiards playertruly excellent,
so that you can cause the ball to bounce off the cushions many times and
return exactly to the same place. Of course you know that billiard balls
with no spin bounce according to an equal-angle law (see figure 6.17).
But now you want to know about cubes. Show how you can think of a
cube as a square billiards table together with some appropriate group of

I

A

Exploring the Cube

G H

C
C

a) (b)

D
D

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Results 277

Figure 6.17
A perfect bounce on a square billiards table.

Figure 6.18
A rectangular torus.

permutation operations (name them). A turtle line will just be a bounc-
ing billiard shot (the equivalent of a wrapping window) plus a change
in the hidden part of state (the permutation) for each bounce. Explain
this, and construct a regular monogon in this representation.

6.3.6 More Distance

Beyond the conjecture that all regular monogons with the same heading
have the same length, distance on a cube can be the basis for a number
of investigations. In general there are an infinite number of turtle lines
between any two random points. (Are there exceptions to this when
points are nonrandom, such as vertices or centers of faces?) It is true
on a cube that one of those lines must be the path of shortest distance;
but there are other surfaces, such as a rectangular torus (shown in figure
6.18), for which the shortest path between a pair of points need not be
a single turtle line. (It is, however, a number of turtle segments glued
together.) Can you give an example?

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

278 Exploring the Cube

Finally, although the circumference of a POLY circle is not always 2irp
(p =radius of curvature), the circumference of a radial circle (the points
reached by a turtle walking a constant distance r in all directions from
a given point) is always 2irr.

6.4 Conclusion

We hope you have learned a lot about cubes, about representations,
about geometry, about mathematical exploration. Don't judge your own
results and insights by the results of the previous section. Those were
end products of rough guesses and much searching for appropriate ways
of looking at the cube. The hardest part of doing mathematics, and the
real meat as well, is often hidden far beneath such a slick surface.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

A Second Look at the Sphere

Do not despair. Remember there is no triangle,
however obtuse, but the circumference of some circle
passes through its wretched vertices.

Samuel Beckett, Murphy

We have already found out a great deal about geometry on the surface
of a sphere, in chapter 5. But our concern there was to uncover facts
about the sphere that would guide our exploration of arbitrary surfaces.
Now is your chance to investigate carefully the peculiarities that make
the sphere different from every other surface. Constructing a computer
simulation of a sphere will be even easier than making one of a cube.
The reason is that a sphere is "the same all over." In mathematical
terminology, one says that the sphere is homogeneous (each point is
just like every other point) and isotropic (at each point, every direction
is just like every other direction).

Approaching the sphere fresh from turtle investigations of planes and
cubes, we see that the salient feature of this new geometry is its curva-
ture. Of course, the cube had curvature, too, but it was concentrated
into eight identical vertices and hence easy to keep track of. The sphere,
however, is everywhere curved, and, as we saw in chapter 5, the excess
of a closed path is proportional to the enclosed area. So the total turn-
ing of a closed path depends on its size. Turning cannot be separated
from going forward; the symmetry of a figure such as POLY (SIDE,ANGLE)

depends on SIDE as well as ANGLE.

The theme of this chapter is that we can turn this complication to our
advantage. We will find that not only are going forward and turning
interrelated, but when viewed from the proper perspective they are
absolutely identical. This natural symmetry between the basic turtle
state-change operators FORWARD and LEFT will guide us in building the
computer sphere as well as in exploring its geometry.

7.1 A Computer Simulation

Our design for a computer simulation of a turtle-geometric sphere ad-
heres to the same two principles that proved so fruitful in our work with
the cube. First, we'll separate the problem into modules, and, in par-

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

280 A Second Look at the Sphere

ticular, define the internal representation independent of concerns about
drawing on the display screen. Second, we'll choose representations that,
as much as possible, are intrinsic to the problem at hand.

1.1.1 Internal Representation

There does not seem to be any simple alternative to representing the
sphere as part of three-dimensional space. (You are welcome to look for
alternatives.) This means that our representation will not be entirely
intrinsic. But we can at least use vectors to describe the situation,
rather than jumping directly to Cartesian coordinates. We'll indicate
the turtle's position by a vector P pointing from the center of the sphere
to the current turtle position. In addition, we'll represent the heading
as a vector H that points in the direction the turtle is currently facing
(see figure 7.la). Note that H is tangent to the sphere and therefore
perpendicular to P.

What is the FORWARD ("sphere forward") state-change operator in this
representation? The key observation is that it is merely a rotation of P
and H through some angle in the plane determined by those two vectors
(see figure 7.lb and 7.lc). We can easily compute this rotation using the
rotation formula of subsection 3.2.2:

Rotate(v, A) = (cosA) X y + (sin A) X Perp(v)

The vector H can serve as Perp(P) if we select H to be the same length as
P. And then P is Perp(H). Therefore, we have in the plane determined
by P and H

Rotate(P, A) = (cos A)P + (sin A)H,
Rotate(H, A) = (cos A)H - (sin A)P.

That's all; we are done with FORWARD.
What about RIGHT and LEFT? They just rotate H in the plane tangent

to the sphere at P and leave P alone. Again, this is simple to compute
if we can get our hands on Perp(H). We do this in the same straightfor-
ward way in which we dealt with the three-dimensional turtle in section
3.4. Along with P and H, include in the turtle's state a third vector L
(for left), which is perpendicular to both P and H. Then, in the plane
determined by H and L, L can serve as Perp(H) and H as Perp(H). So
in this plane we have

Rotate(H, A) = (cos A)H + (sin A)L,
Rotate(L, A) = (cos A)L - (sin A)H.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

A Computer Simulation 281

(e)

Figure 7.1
(a) Two perpendicular vectors P and H give position and heading for a turtle on a
sphere. (b) FORWARD in perspective. (c) FORWARD in the plane of the path. In (b) and
(c), going FORWARD corresponds to rotating P and H in the plane determined by these
two vectors.

Thus, the sphere simulation turns out to be the "turning" part of a
three-dimensional turtle (with different names attached to the rotation
commands).

In summary: The turtle's state is represented by three vectors P, H,
and L, which are initially set up to be mutually perpendicular and of
the same length. FORWARD is the operation

P - (cosA)P + (sinA)H,
H - (cosA)H - (sinA)P;

LEFT is the operation

H s (cosA)H + (sinA)L,
L - (cosA)L - (sinA)H.

(a) (b)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 7.2
(a) The wrong way to draw a turtle path. (b) Breaking up the path into short
segments gives the right picture.

For computer implementation, see the rotation programs in subsection
3.4.3.

7.1.2 Display

With a three-dimensional position vector in hand, all we need do is
project onto a display plane. There seems little point in being fancy, so
we suggest simple parallel projection as described in subsection 3.5.1:

(display, display) = Project(P) = (Pi, Pu).

We leave it up to you whether you want to display lines on the back side
of the sphere as dotted or in a separate projection, or whether you want
to invent some other display technique.

In drawing the turtle's path, there is one additional complication
that we didn't have to face in the cube simulation or with the three-
dimensional turtle. Straight turtle lines on a face of the cube and
in three-dimensional space will also look straight when drawn on the
display screen. But that's not true for the sphere. Suppose the turtle
goes FORWARD a large amount. Then rotation will compute the correct
new position, but you should not therefore indicate the turtle's path by
drawing a straight line on the display screen to join the old and new
positions as in figure 7.2a. Lines on the sphere should look curved when
projected onto the display screen. The easiest way to accomplish this is
to break up large FORWARDs into a sequence of small ones, as shown in
figure 7.2b. Each of the small steps can then be represented as a short
straight segment. (Increments of 5° or 100 will probably be short enough
to give a good picture.) If the pen is up, of course, you might as well
save computation time by having the turtle jump directly to the new
position.

282 A Second Look at the Sphere

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Exploring 283

7.1.3 Distances and Angles

Does it seem strange that our sphere simulation expresses FORWARD as
a rotation through an angle, the saine as RIGHT or LEFT? You may
choose to make FORWARD take a distance as input rather than an angle,
but measuring distance in terms of angle has advantages. First, it is
an invariant measure of distance (invariant on moving to a sphere of
different size). Provided distance is measured as an angle, programs such
as POLY with fixed inputs will have the same behavior on a sphere of any
size. More important, it emphasizes that on a sphere FORWARD arid LEFT

are the same kind of operation. They each rotate two of the turtle's state
vectors and leave the third fixed, so if you insist on measuring FORWARD

in units of, say, inches, give thought to measuring LEFT in inches also.

7.2 Exploring

One of the best heuristics in learning and problem solving applies in
exploring as well: Ask yourself "What do I know about similar things?"
How is a sphere like a plane or a cube? How is it different, and how do
those differences come about? In particular, a sphere is very much like
a plane when you're constrained within a small area or a narrow slice.
That observation has a lot of experimental and theoretical implications.
For example, every formula that applies on the sphere must approximate
the corresponding plane formula in an appropriately small domain. You
may wish to look carefully for such things.

One word of advice: In setting out to explore the sphere's geometry,
don't let your mathematical sight be clouded by too strong a fixation
on obtaining exact formulas. Of course, there are many exact formulas
to be discovered, but there are also many intriguing approximations and
qualitative results, which you won't want to miss. Be on the lookout.

7.2.1 POLY

An obvious area for turtle exploration on the sphere is the behavior of
the POLY program

TO SPHERE.POLY (a, /3)

REPEAT FOREVER

FORWARD a

LEFT /3

Closure, symmetry, and all the other standard POLY results deserve your
attention. In some ways spherical POLYs and other fixed instruction

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 7.3
POLY(90, 90) has threefold symmetry; O = 1200.

programs may be simpler than on a planefor example, exceptional
looping programs that march off to infinity on the plane cannot do so
on a sphere. (What do they do?) In other ways, spherical POLYs may be
much harder to understand.

A good way to get a handle on the general problem is to carefully
examine one specific caseregular four-sided polygons, for example.
Take experimental data on the set of a's and /3's that produce such
figures. Can you guess or derive a functional relationship between a and
¡3? If not, can you find any qualitative features of such a relationship?
Are there restricted domains where the relationship is simple? For a
given value of a, is it possible that there are two different values of /3

that will both give four-sided figures? Or is the correspondence between
a and /3 one-to-one? Are there "forbidden domains" (angles or distances
that cannot have "squares" associated with them)? Now make a similar
study for three-sided POLYs, or five-sided ones. What are the general
phenomena for n-sided POLYs?

7.2.2 Symmetry Types

If you try a few POLYs you will observe that, just as the vertices of a
POLY in the plane lie on a circle, so the vertices of a POLY on the sphere
appear to lie on latitudelike paths, that is, on spherical circles. Can
you prove this? Assuming it is true, note the special significance of the
center of this circle. It is a point of the sphere that remains fixed as we
rotate the sphere to produce a symmetry of the POLY. Figure 7.3, for
example, shows how we can see a symmetry of POLY (90,90) by rotating
the sphere about the center of the POLY circle. The amount of rotation
needed for a symmetry (call it O) relates directly to the order of the

284 A Second Look at the Sphere

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Exploring 285

symmetry. Here POLY (90, 90) has threefold symmetry, and G = 120°.
This symmetry angle G is a prime candidate for your investigation. Can
you give a formula for O in terms of the inputs a and /3 to the POLY
program?

7.2.3 Circles

Notice that, on a sphere, constant-curvature circles (which are generated
by POLY(a , ¡3) with a and /3 both small) are the same as radial circles
(points of fixed distance from a center), and that this is true in the plane
but not true on the cube (see subsection 6.3.7). (Can you prove this?)
But circles on the sphere differ from circles on the plane in that, on the
plane, the radius of the circle, r, is related to the radius of curvature,
p a//3, by r = p. What is the relationship between r and p on the
sphere? Furthermore, the circumference of a circle is neither 2irr nor
2irp; nor is the area irr2 or ii-p2. What are the correct formulas? (Hint:
In investigating these relationships it is much easier initially to use r
than p.)

What is the total turning of a spherical circle in terms of r or p? More
qualitatively, is there a circle of greatest total turning? (On a cube the
"truly remarkable theorem" of subsection 6.3.3 implies that a circle can
have at most 4 X 2ir = 8ir radians of turning.)

7.2.4 Distances

Distances in a plane satisfy a basic relationship called the triangle in-
equality, which states that the sum of the lengths of any two sides of
a triangle must be greater than the length of the third side. What is
the spherical triangle inequality? Can you prove it? What exactly are
the restrictions on its validity? (Hint for proof: Assume that the triangle
inequality holds for triangles of small area, such as long, thin slivers;
then go back to prove that assumption later.)

7.2.5 Two New Views of Sphere

The "window view" of a cuberegarding the cube as a square together
with a group of rotations that flip the cube whenever the turtle crosses
an edgeplayed a key role in our study of the cube in chapter 6. Before
you continue reading, answer this: What views of a turtle walking on a
sphere correspond to the window and card views of the cube?

Just as a circle can be thought of as a POLY with an infinite number
of sides, a sphere can be thought of as similar to a polyhedron but with

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

(a)

(b)

Figure 7.4
The window picture for a sphere turtle: (a) going forward; (b) turning (axis through
turtle coming out of page).

an infinite number of faces. Each face is infinitely small, and the turtle
is always crossing edges. The story is hard to make sense of in detail
but suggests the following view of walking and turning on a sphere: The
turtle stands still (within an infinitely small window) and the sphere
rotates behind the turtle as it walks (figure T.4a). In a similar fashion,
the turtle again stands still while turning, and sphere rotates in the
opposite direction behind (figure 7.4b). (Notice that this is not exactly
analogous to the cube situation, where cube does not turn for LEFTs or
RIGHTs.) It is as if you set turtle on its back to hold up the world with
its feet. Walking and turning then rotate the world like a ball on the
feet of a "circus turtle," as shown in figure 7.5a.

Observe that FORWARD and LEFT are both represented by the same kind
of operationa rotation of the sphere. Performing FORWARD is the same
as rotating the sphere about some axis, which we'll call the FORWARD

axis. The LEFT operation is a rotation about a different axis, the LEFT

axis, which is perpendicular to the FORWARD axis. Note that these axes
have a permanently fixed orientation in this view of the sphere.

The corresponding "circus" activity that gives a "card view" of walk-
ing on a sphere involves putting the turtle inside the sphere, which is
free to roll on a plane. As the turtle walks, the sphere rolls to keep the

286 A Second Look at the Sphere

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

N

Figure 7.5
(a) A "circus turtle" with the world at its feet. (b) Rolling a ball from the inside: the
"card view" of a sphere turtle.

turtle at the bottom. When the turtle turns, the sphere prepares to roll
in a new direction. (See figure 7.5b.)

7.3 Results

This section answers some of the questions raised in the previous one.
We urge you NOT TO READ FARTHER until you've explored some of
these issues on your own.

The window view will be the basis of most of our analyses, so get
it firmly in mind. The sphere stands skewered by two fixed, mutually
perpendicular axes: one labeled FORWARD and one labeled LEFT. Each
command causes a rotation of the sphere about the appropriate axis.

7.3.1 The FORWARD-LEFT Symmetry

Let's continue exploring the symmetry between a and /3. FORWARD and
LEFT are seen to be the same operationa rotation of the sphere-
except that the axes of rotation are different. Does this mean that
POLY(a,/3) and POLY(/3,a) should do the same thing? An argument
that they should goes something like this: Make an invariant description
of POLY (a, /3). It causes alternate rotations through angles a and /3

about mutually perpendicular axes. But that is exactly the description
of POLY (f3, a) as well. From an invariant point of view, there should be
no difference between them.

On the other hand, the figure drawn by POLY (90,0) certainly does not
look like that drawn by PQLY(0,90). The question is, why not? The
key to answering this is realizing that in our picture, it happens that the
turtle is on the LEFT axis and the pen drags along the sphere whenever a

Results 287

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 7.6
Dual figures.

FORWARD command rotates the sphere. Placing the turtle and pen down
on the LEFT axis distinguishes one axis from the other and hence breaks
the FORWARD-LEFT symmetry. If you put the pen down on the FORWARD

axis instead, you'll see lines drawn by the LEFT operation but not by
FORWARD. This second figure, drawn by a pen on the FORWARD axis, is
called the figure dual to the usually drawn one. If we include pen site in
the invariant descriptions of POLY figures, we see that POLY (a, /3) and
POLY (/3, a) are distinguished exactly by the fact that with POLY (a, /3)

the pen is on the axis for which the rotation is /3, while with POLY(/3, a)

the pen is on the a axis. Changing the pen site to the other axis turns
POLY (a, ¡3) into POLY (/3,a); therefore, by definition, those POLYs are
dual to one another.

How can we see what POLY(a,ß) and POLY(ß,a) have in common?
Let's concentrate on the state change. Suppose POLY(a,/3) closes (posi-
tion and heading) after n steps. At this point, the sphere has returned to
its initial state because the point where the turtle started is back under
the turtle, and the sphere is oriented so that the turtle will retrace its
initial step with another FORWARD. But with the sphere back to the initial
state, a pen on the FORWARD axis must have its starting point under it
as Wellso it must draw a closed figure, too. This is expressed in the
following principle:

POLY duality principle On a sphere, POLY (a, ¡3) closes in exactly the
same number of steps as POLY (f3, a).

Figure 7.6 illustrates the dual figures POLY(55,25) and POLY(25,55).

288 A Second Look at the Sphere

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Results 289

Figure 7.7
State change of FORWARD a, LEFT ß (in a POLY "square") can be achieved by a single
rotation about the center of the circumscribed circle.

No law says that we have to place the pen on either the LEFT or
the FORWARD axis. Any point on the sphere will do, and the picture
drawn by POLY (a, 13) will vary with the selection of the pen site. For
a general pen location, both FORWARD and LEFT commands will draw
lines, but the resulting figure will still have the same symmetry as the
usual POLY (a, 13). Investigate these figures. How can you modify your
computer sphere program so you can see these drawings on the display?

7.3.2 Net Rotation of a POLY Step

The fundamental insight in arriving at the duality principle was to use
the window picture to describe the process of drawing a POLY figureto
focus on the rotational state of the sphere rather than fixing the sphere
and keeping track of the moving turtle. We'll apply this now to elaborate
upon the observation in subsection 1.2.2 that the vertices of any POLY

lie on a circle.
Imagine rotating the sphere to produce the figure POLY (a,ß). First

make a FORWARD rotation, then a LEFT rotation. Each pair of rotations
takes the pen to a new vertex. But we mentioned earlier that these
vertices lie on a circle, just as if we were simply making a single rotation
of the sphere about a fixed axis to get from one vertex to the next. This
suggests that the combined operation FORWARD a followed by LEFT 13 is

equivalent to a single rotation about some new axis, and the circle on
which these POLY vertices lie is a circle of latitude for this axis (figure
7.7).

Net rotation theorem If we rotate the sphere by a about the FORWARD

axis and then rotate it through /3 about the LEFT axis, the net effect will
be the same as a single rotation (about some axis that depends on a and
i3).

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 7.8
Rotating a cube 900 about two perpendicular axes in sequence is equivalent to rotating
120° about a diagonal.

Think about this remarkable theorem. Try making two sequential
rotations of any object. Can you see the net axis and the amount of net
rotation? This is a very hard problem in general. In fact, the proof of
this theorem is hard enough so that we will show only that such an net
rotation exists; we won't compute its axis. So as not to clutter more
important issues, we will assume this theorem for now and draw some
conclusions. We'll return to the proof in 7.3.6.

In case you failed miserably at visualizing a net rotation, we hope
figure 7.8 will restore some faith in the theorem. It shows how a cube
rotated 90° in sequence about two perpendicular axes through face cen-
ters winds up rotated 120° about an axis piercing two vertices.

It should be clear that the symmetry angle of POLY (a , ¡3), which we
called O, must be the angle of net rotation of a POLY step. Does the
FORWARD-LEFT symmetry say something about the relationship of a, ¡3,
and O? To see this we add a bit more detail to our understanding of the
way such symmetries work.

Think of the LEFT and FORWARD axes as coordinate axes. Now suppose
someone happened to reverse the axis labels on a sphere diagram. Then
FORWARD a, LEFT ¡3,... would be read as LEFT a, FORWARD ¡3.....In
other words, POLY (a, ¡3) and POLY (/3, a) are not only intrinsically the
same (as far as sphere state is concerned), but we can think of them as
descriptions of exactly the same process from two different coordinate
systems. Since the angle O that summarizes FORWARD a, LEFT ¡3 does
not depend on any coordinate system, it must be invariant under the
exchange. We thus obtain a stronger version of the duality principle of
7.3.1, which applied only to closed POLYs:

POLY (a, ¡3) and POLY (/3, a) always have the same symmetry angle.

290 A Second Look at the Sphere

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Results 291

7.3.3 The Spherical Pythagorean Theorem

There is a wonderful formula relating a, ¡3, and 0:

a2 + ¡32

The equation is not exact, but it is a good approximation for small
angles. Small, however, does not mean tiny. In fact, the formula is off
only by a degree or so for angles a and ¡3 as large as 45°. Again we
postpone proof. The question is, did you discover this relation while
exploring with your computer sphere? This is a remarkably simple and
powerful formula. It is the equivalent of the Pythagorean theorem, only
for rotations about perpendicular axes rather than sides of a plane right
triangle. Go back and look at your experimental technique. What didn't
you do that you should have done to discover the formula? What should
you have done better? For example, what kind of graphing would have
uncovered the relationship? What things might have prompted you to
guess the relationship? A detailed study of why your exploration did
not reveal some simple and powerful relationship may be more helpful
to you than an accidental discovery of it. At the very least, look at the
implications of such a formula and check them on your computer sphere
simulation.

Although it is not exact, this formula makes some very concrete
suggestions concerning POLYs, For one, it suggests the inequalities a <
0, ¡3 < 0the "hypotenuse" is always larger than the other "sides."
These must hold whenever the error in the Pythagorean formula is less
than any of the terms in it. When valid, these inequalities establish
forbidden zones for n-gons. There are no four-sided figures with a or ¡3

greater than 90°, no three-sided figures with a or ¡3 greater than 120°,
and so on. In such cases 0 would be restricted to values too large to give
the appropriate symmetry. Look for such forbidden zones.

We stress again that the approximation a2 + ¡32 0 is quite close
even for fairly large angles. It predicts that the set of pairs a, ¡3 giving
a particular symmetry (determined by 0) lies nearly on a circle which
has radius 9 centered at the origin in the a, /3 plane (see figure 7.9). The
approximation is almost perfect for O less than 45° (that is, for polygons
with eight or more sides), and it is not bad even for squares. Because of
the FORWARD-LEFT symmetry, the graph of pairs a, ¡3 giving a particular
symmetry is always precisely symmetric in a and /3 (that is, about the
45°, a = /3 line). Furthermore, one finds that the forbidden zones a < O
and ¡3 < O are maintained even when a and /3 are large.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

292 A Second Look at the Sphere

, Line of
'Reflection Symmetry

Figure 7.9
Graphing the pairs a and ß that give a particular symmetry 9. The shaded area is
the forbidden zone.

7.3.4 Exact Formula for

The exact formula for û is tricky to find. Here is the result:

Theorem The symmetry angle O for the combined operation FORWARD c,

LEFT /3 satisfies the formula

ecos =cos-cos-.

How can we prove such a thing? It's not easy. First of all, we need some
way to see O in terms of the FORWARD and LEFT rotations. Let's use T to
denote the combined operation FORWARD c, LEFT /3. The transformation
T is, by the theorem in 7.3.2, a rotation through angle O about some axis.
If we choose a point P on that axis, then P must return to its initial
position after the two parts of the POLY step. So look at some vector y
tangent to the sphere at P (figure 7.lOa). The transformation T should
have the net effect of rotating y by O. Examine carefully how y and P
move under T: First, the FORWARD c rotation moves P along along some
circular arc A (an arc of a circle of latitude about the FORWARD axis) to
end up at the point Q. Then the LEFT /3 rotation moves Q back to P,
this time along an arc B on a circle of latitude for the LEFT axis.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

(a)

(e)

(e)

FORWARD
axis

(b)

Figure 7.10
(a) Computing the symmetry angle O by following the path of a vector y based at
the fixed point P. (b) The vector moves along two circular arcs A and B. (c) The
angle is the angle between A and B at P. (d) When y reaches Q, it makes there
an angle of with the arc B. (e) Moving back along B to P gives a total change of
2 from its original heading. (f) The vector a can be decomposed into components
along the chord (z) and perpendicular to the chord (x).

Results 293

LEFT axis

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

294 A Second Look at the Sphere

Before following y on its trek, let's focus on the arcs A and B. They lie
in perpendicular planes and intersect at the two points P and Q (figure
'T.lOb). Look at the intersection at P. Let be the angle between A
and B at P (that is, the angle that a turtle crawling on the sphere along
A would need to turn at P in order to face along Bsee figure 7.lOc).
By symmetry the arcs intersect at the same angle at Q.

In determining what happens to y, the crucial observation is that
the rigid rotations of the sphere we are about to perform maintain a
constant angle between y and the latitudes of rotation. (Glue a vector to
a globe latitude, rotate about the globe's axis, and watch what happens.)
Keeping this observation in mind, start y pointing along A. It stays
pointed along A as we rotate the sphere by a. Figure T.lOd shows that
when y reaches Q it points at the angle with respect to the B circle.
Rotating back by 3 returns y to P, maintaining the angle from B.
Figure 7.10e shows that y has made a net rotation from start to finish
of O 2.

Now that we've related O to something that can be computed more
directly in terms of a and ß, we can complete the proof of the theorem.
Our tool will be the relation between angles and dot products:

st= IsItIcos-y

where -y is the angle of intersection between s and t (see section 3.5,
exercise 4).

We'll apply this formula to unit vectors a and b pointing along arcs
A and B, respectively, at P. The angle between a and b is, as we know,

= 0/2, and so we have

ab=cos. (1)

Now let's set up a coordinate system in which to compute a b. Let z
be a unit-length vector at P pointing along the chord joining P to Q
(figure 710f). Let x be a unit vector in the plane of A and perpendicular
to z. Similarly, let y be a vector perpendicular to z lying in the plane of
B. The angle between a and z is just the angle between the chord and
the circular arc A, which is equal in turn to half the arc angle a. So we
can produce the vector a by rotating z toward x through an angle a/2.
Therefore, we have

a = z cos + x sin

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Results 295

Similarly, we have

b = zcos ysin.

Taking the dot product of these two expressions, we find that since z,
x, and y are mutually perpendicular, all the terms are zero except the
term containing z z 1. Thus,

a ¡3a b cos - cos

Combining this with equation i gives

0 aßcos = a b = cos cos

which proves the theorem.
As an application of this theorem, let's see how our formula for O

relates to the spherical Pythagorean theorem of 7.3.3. Have you seen
the approximation formula for the cosine of an angle x (in radians),

cosx=1++.. ?
If x is small, then the first two terms of the series give a good approxima-
tion:

X2
CO5X -
Using this approximation in our theorem for O gives

i(O 1(a 1 i(/32
2\2) 2\21 2\2)

which simplifies (if you leave out the very small term a2ß2) to the
Pythagorean theorem 02 ç a2 + ¡32.

7.3.5 Results for Circles

This subsection derives a fundamental result that relates the total turn-
ing around a circle to the radius.

We want to know the amount of turning a turtle will do in walking
around on a spherical circle. We can consider the circle to be a latitude
at an angle e down from the north pole. (The name of this angle is the

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

(e)

Figure 7.11
(a) An arc of radius r is part of a great circle subtending angle e from center; 9 =
r/R. (b) Draw a cone tangent to sphere along the latitude circle. (c) With the cone
cut apart, the path is seen to be part of a planar circle.

colatitude.) From figure 7.11a one can see that 9 = r/R, where R is
the radius of the sphere and r is distance (measured on the sphere) from
the turtle's path to the north pole.

The trick in determining the total turning done by a turtle in walking
round a latitude ¡s to invent a way to lay that total turning out on a
plane so we can immediately see it as a change in heading. Imagine
a cone placed over the sphere, tangent to it at the latitude of interest

296 A Second Look at the Sphere

(a) (b)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

TT = Total turning along circle

E = 2ir - TT
f r

= 2iii 1 cos -
R

E = Excess along circle

E = kA =
R2

A = Area within circle

TT = 27r cos r
R

Figure 7.12
Relations among the various parameters of spherical circles.

(figure 7.11b). Now, a turtle walking on the conical latitude experiences
locally (near its path) the same world as a turtle on a sphere; it would
have the same total turning. We can cut up and lay out the cone to see
that the turtle's path can be regarded as an arc of a regular planar circle
(figure 7.11c). The heading change for the turtle's path can therefore be
computed as 27v times the fraction of the planar circle the turtle traverses
in covering the path:

TT
length of path on sphere

>< 2
- total circumference of planar circle

The length of the turtle's path is 27vR sin® (figure 7.11b). The circum-
ference of the corresponding planar circle is 2ivs, where s is the distance
to path from the peak of the cone. Returning to the uncut version of
the cone, one sees that s is equal to Rtan0. Hence,

2TR sine
TT

= 27rR tan e
x 27r 2ir cos 9 = 27v COS

This relation completes the chart shown in figure 7.12 of relationships
among circle parameters on the sphere, and allows any one to be com-
puted from any other.

r = Radius of circle on sphere

C = Circumference

C = 2irR r
R

C

= R tan r
R

p = Radius of curvature

Results 297

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

298 A Second Look at the Sphere

7.3.6 Proof of Net Rotation Theorem

We'll tie up loose ends by giving the proof that a POLY step is equivalent
to a single rotation about some axis. There are two parts to the proof.
The first is to show that there is some fixed point of the pair of rotations.
That is, if we let T denote the combined operation FORWARD a followed
by LEFT fi, and imagine how the points of the sphere are moved about
by T, then there must be some point P that comes back to its initial
position, T(P) = P. The second part of the proof is to show that, once
we know a fixed point exists, then T must necessarily be a rotation of
the sphere about the axis passing through P.

Proof that T has a fixed point Examine how T moves the sphere. Each
of the rotations FORWARD a and LEFT fi moves points around on the
latitudes of their respective axes. If a point p gets moved to q by
FORWARD a, then p and q must lie on the same latitude of the FORWARD
axis. Similarly, since the subsequent LEFT fi moves q to T(p), q and
T(p) must lie on the same latitude of the LEFT axis (figure 7.13a). Now
apply this reasoning, assuming that we start with a fixed point P of
the transformation. The first rotation has P and its FORWARD.rotated
image Q on the same FORWARD latitude, and the second rotation has Q
and T(P) on the same LEFT latitude. But T(P) = P, so P and Q are
simultaneously on a latitude of both axes (figure T.13b). Therefore, we
can narrow our search for P and Q by considering only those points
that share both a FORWARD latitude and a LEFT latitude. The set of
such pairs p and q are symmetrically located above and below the great-
circle longitude that passes through the FORWARD and LEFT poles (figure
7.13c). For reference, call this common longitude of the FORWARD and
LEFT poles the Greenwich longitude. Those ps and qs must lie on the
a/2 (FORWARD) longitude above and below the Greenwich longitude in
order for a rotation of a about the FORWARD axis to take ps and move
them to qs located symmetrically (with respect to Greenwich). So all
candidates for P and Q lie on the pair of FORWARD latitudes a/2 above
and below the Greenwich longitude. We need only ask now whether one
of those qs is returned to its initial p by a LEFT fi. Look at how much
LEFT rotation would be needed to make one of those qs return to its p.
At the LEFT pole, one needs 1800 (figure T.13d). Near the FORWARD pole
one needs only a tiny fractionapproaching Oof a whole revolution
(figure 1. 13e). Somewhere in between, there must be a place where the
actual fi will suffice (but not overdo) to bring q back to p; those are the
P and Q we want.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Results 299
FORWARD latitude

FORWARD
axis

(a)

(b)

(c)

Figure 7.13
(a) The FORWARD operation moves each point p to some point q along a latitude of its
axis. LEFT moves q to T(p) along a latitude of its axis. (b) If P is a fixed point, then
the LEFT rotation moves Q back to P along a LEFT latitude line. (c) The pairs p and
q that share both a LEFT and a FORWARD latitude are symmetrically located above and
below the great circle passing through the FORWARD and LEFT poles.

LEFT lai ilude

LEFT latitude

Greenwich Longitude

FORWARD Pole

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

300 A Second Look at the Sphere

(d)

(e)

LEFT Latitude

LEFT Latitude

Figure 7.13 (cont.)
(d) The amount of rotation needed to make Q return exactly to P is almost 1800 for
P near the LEFT pole and (e) small near the FORWARD pole.

Proof that, if there is a fixed point, T is a rotation Now that we have
a fixed point, we will show that T must be a rotation about the axis
passing through P. The key idea here is that T is distance-preserving-
that is, for any points p and q, the distance from p to q is equal to the
distance from T(p) to T(q). (Distance, of course, is measured by a turtle
crawling on the sphere.) Rotations and combinations of rotations, like
T, must preserve distance. The following lemma completes the proof:

Lemma Any distance-preserving transformation of the sphere, if it has
a fixed point, must be a rotation of the sphere about the axis containing
the fixed point.

Think about stirring around all the points on the surface of a sphere
so that distance between each pair is preserved and making sure one

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Results 301

point does not move. How can we be sure that the stirring is actually a
rigid rotation around an axis? To begin with, consider a latitude circle
about the line containing the fixed point P and its opposite point on the
sphere (the line we hope is the axis of net rotation). This circle consists
of all points at some fixed distance from P. Aher we apply T they all
must be the same distance from T(P), since T is distance-preserving.
But T(P) = P; hence T applied to any point on the latitude circle must
also lie on the same latitude circle. As a special case, the point antipodal
to P, which happens to be the only point in its particular latitude, must
also be fixed under T.

So we see that each latitude must be stirred around within itself. But
since distance within the latitude must be preserved, each latitude must
be rigidly rotated. The final possibility to reject is that all latitudes
are rotated, but not all by the same amount. The trouble with this is
that longitudes would then "wriggle." But notice that T must transform
turtle lines to turtle lines. (Remember, turtle lines are defined using only
the ability to measure distance.) So each line of longitude, as a turtle
line running from P to its antipodal point, must be transformed into
another line of longitude. So all latitude circles must rotate the same
amount. The whole skeleton of latitudes and longitudes must be moved
intact, which shows that T must be a rotation. This completes the proof
of both theorem and lemma.

Exercises for Chapter 'T

In case you run out of things to think about, or in case you cheated and
read section 7.3 before conducting your own investigation, here are some
additional questions about turtle geometry on spheres.

[PJ Experiment with different projections from sphere to plane in
your turtle sphere simulation. For example, try stereographic projection
(figure 7.14). (Note that the north pole on the sphere ends up "at
infinity" on the plane.) Stereographic projection has the property that
angles are preservedfor example, two lines intersecting at right angles
on the sphere will intersect at right angles in the projection. This implies
that straight turtle lines on the sphere are mapped to straight lines or
circles on the plane. (Think about that.) Also, circles are mapped
to circles. Other projections to try are the cartographers' standard
Mercator and polar projections.

There is a slight gap in our proof of the POLY duality principle in
subsection 7.3.1. We said that when the sphere returns to initial state

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 7.14
Stereographic projection maps points p and q on the sphere along a line through the
north pole to the equatorial plane. Points in the northern hemisphere get mapped
outside the equator, points on the southern hemisphere inside.

and POLY(a,8) is closed, then POLY(/3,a) is also closed. Strictly, this
only shows that POLY (/3, a) cannot have more vertices than POLY (a, /3),
not that the two figures have the same number of vertices. Can you
repair the proof? [A]

[DP] Which POLY inputs a and /3 will give closed figures?

[D] Do the operations FORWARD a, LEFT /3 and FORWARD /3, LEFT a
have the same associated O? (Subsection 7.3.2 showed that FORWARD a,
LEFT /3 and LEFT a, FORWARD 1 have the same O.) Do they have the
same axis of net rotation? If not, how do these compare? [A]

[P] Small figures should have small areas and hence small excesses,
so TT = 2n should be a passable approximation for the total turning
around a small polygon. This approximation can be improved by using

areaTT = 2ir - excess = 2ir -
R2

and using the planar formula for area. (The latter is justified for small
figures, which must be approximately planar.) Try this out for, say,
squares. What area should you use to handle star POLYs? [A]

The planar approximation of exercise 5 can be helpful for figures with
very large sides as well. A figure with large sides and small angles has the
same symmetry as a figure with a and ¡3 reversed by the FORWARD-LEFT

symmetry. But that's a small figure and hence nearly planar. Startle
your friends by predicting ofThand that a huge POLY with a side (a) of

302 A Second Look at the Sphere

North Pole

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Results 303

120 and an angle (/3) of 5 will be very nearly a triangle. Can you improve
the approximations for these large figures in the same way we improved
the formula that gave the total turning for small figures (exercise 5)?

Verify each relationship shown in figure 7.12. Derive direct relations
between, for example, r and p; TT and circumference. [A]

In subsection 7.3.4 we deduced the spherical Pythagorean theorem
from the exact formula by approximating the cosine by the first two
terms of the cosine series. It can be shown that the error in this cosine
approximation is bounded by the third term in the series, x4/4!. Use
this to deduce a bound on the accuracy of the Pythagorean theorem as
an approximation to O. Say also whether the approximation is too high
or too low.

The cosine approximation used above is valid only for angles expressed
in radians, but the Pythagorean theorem is also good for angles in
degrees. Give a proof of this fact, and also investigate the error in the
approximation. [A]

[D] Now that you know from 7.3.4 how to compute O in terms of
and ¡3, show that r, the radius of the POLY circle, can be computed as
sinr = sin/sin. [H]

Generalize the theorem of 7.3.2 to show that any sequence of
rotations of the sphere, about any axes, is equivalent to a single rotation.
[H]

[D] Suppose we perform two consecutive rotations of the sphere
about two axes that are not necessarily perpendicular. First rotate by
c around one axis, then through /3 about the other axis. Show that
the formula in 7.3.4 generalizes to give the following formula for the
symmetry angle O:

O o ¡3 ../3cos = cos - cos - - sin - sin -- cos 'y

where 'y is the angle between the two axes. [H]

Just as the result in 7.3.4 leads to the "Pythagorean theorem" as an
approximation for O, show that the result of exercise 12 leads to

, a2 + /32 + 2a/3 cos 'y,

which we could call the "spherical law of cosines." [H]

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

304 A Second Look at the Sphere

[PD] Can you extend the analysis of POLY to general fixed instruction
programs? For example, what is the symmetry angle O for an INSPI?

We noticed the FORWARD-LEFT symmetry in the vector triad method
of representing turtle state on a sphere before we discovered the "window
picture." But we did all our symmetry analysis in the latter and not in
the former. Why?

The domain for validity of the spherical Pythagorean theorem, small
a and ß, is just the domain for circles. Use it to derive formulas for n
(the number of steps to make the POLY circle close), for the total turning
involved, and for the circumference of the circle. Show that these are
consistent with what you can derive from figure 7.12. [A]

Each line on a sphere, being a great circle, has a special point
associated with itthe "north pole" when you consider that great circle
to be "the equator." Thus, any triangle has three new points associated
with itthe "north poles" for each side of the triangle. Show that these
three points determine another triangle (called a polar triangle), which
is dual to the original triangle in the sense of subsection '1.3.1. [HA]

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Piecewise Flat Surfaces

"Now, this third handkerchief," Mein Herr proceeded,
"has also four edges, which you can trace continuously
round and round: all you need do is to join its
four edges to the four edges of the opening. The
Purse is then complete, and its outer surface"

"I see!" Lady Muriel eagerly interrupted. "Its
outer surface will be continuous with its inner sur-
fac&.....

Lewis Carrol, SyJ vie and Bruno, Concluded

In exploring the topology and geometry of surfaces, we have investigated
in detail two surfaces of particular interest: the sphere and the cube.
We found a lot of interesting geometry on the sphere arising from the
sphere's property of being everywhere the same. The cube's geometry
was amenable to study because, except at the vertices, it is flat and
planelike. That flatness simplifies the computer program for a cube-
walking turtle; so long as the turtle remains within one face of the cube,
we might as well think of it as walking in the plane.

As we continue our study, it makes sense to look for other "simple"
surfaces. Unfortunately, everywhere-the-same surfaces like the sphere
are very scarce. But surfaces that share the cube's simplifying properties
are easy to come by. In this chapter we will study surfaces formed by
taking a collection of planar pieces and gluing them together along the
edges. These are called piecewise flat surfaces, since any surface formed
in this way will surely be flat everywhere except possibly along the edges
where the pieces are glued together. In fact, if all the planar pieces have
straight edges, then, like a cube, the glued surface can have curvature
only at the vertices (see exercise 16). Figure 8.1 shows some examples
of piecewise flat surfaces.

As with cubes and spheres, the crucial step in designing a computer
program to explore piecewise flat turtle geometry is deciding on a rep-
resentation for these surfaces. A good representation will not only help
us design the computer program, but should also lead to insights into
the mathematical properties of piecewise flat surfaces. Perhaps the most
straightforward representation is simply to describe each face separately
and keep track of which edges are glued together. This kind of repre-

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 8.1
Piecewise flat surfaces.

sentation is called an atlas. Figure 8.2 shows a pyramid constructed
from four triangles and a square, together with the corresponding atlas.
You can think of this mathematical atlas as similar to a road atlasa
collection of separate maps together with information telling which map
to use next when you run off the edge of the map you're using. And this
is precisely how we shall use the atlas to implement a turtle for piecewise
flat surfaces. As long as the turtle remains within a particular face, then
we handle things just as for the familiar planar turtle. Whenever the
turtle crosses the edge of a face, we consult the atlas to determine which
face the turtle has moved to. In this chapter we'll consider only surfaces
that are closed (that is, have no boundary). What this means in terms
of the atlas is that each edge of every face must be matched with some
other edge. No edge can be left "open," or else the turtle could run
across the edge and find itself off the surface.

306 Piecewise Flat Surfaces

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

A Program 307

Figure 82
A pyramid and the corresponding atlas.

8.1 A Program for Piecewise Flat Surfaces

Now we'll turn to the problem of designing a program that allows the
turtle to walk on a piecewise flat surface. Your experience with cubes
and spheres should tell you that there are two main parts to such a
program: maintaining an internal representation and translating the
internal representation into a picture on the display screen. One way
to greatly simplify the second problem is to have the program display
only one face of the surface at a timethe face the turtle is currently
on.

More generally, we will maintain the following design philosophy for
the programs in this chapter: Proceed locally, that is, keep the repre-
sentation as close as possible to what the turtle itself sees and senses.
Accordingly, we will arrange the display so that when the turtle crosses
an edge, the new face the turtle has walked onto will appear as the
turtle sees it (not, therefore, in a standardized orientation as on a page
of a road atlas). In particular, this means that the same face may ap-
pear on the display screen in different orientations. For example, the
turtle trek around the vertex of a cube illustrated in figure 8.3a will be
displayed by the program as in figure 8.3b. Although this complicates
shghtly the translation between internal representation and display, it
does have the advantage that the turtle's heading as shown on the screen
is not changed by crossing an edge. As a project, you might think about
designing programs more in the style of the cube program of chapter 6,
which attempt to display the entire surface on the screen in perspective.
As we will see below, this cannot be done for every surface, because there
are atlases whose corresponding surface simply does not "fit" into three
dimensions. We'll discuss this point further in subsection 8.1.4.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

(a)

(b)

FACE 2

Figure 8.3
(a) Turtle trek around vertex of a cube. (b) The same trek as displayed by the
program, one face at a time.

8.1.1 Internal Representation

In order to simplify our sketch of a piecewise flat turtle geometry pro-
gram, we'll consider only those surfaces that, like the cube, are piecewise
square, that is, are formed by gluing together equal-sized squares. (To-
pologically, this is no loss of generality. Surfaces of any topological type
can be produced in piecewise square form.) If all faces are the same, then
the part of the atlas that describes each individual face is redundant, so
we need to record only how the edges are matched (glued together). We
can therefore take as the atlas for a closed piecewise square surface thE.
collection of matched edge pairs. Each edge can itself be labeled by a
pair of numbers specifying which face and which edge of that face we
are talking about. We'll number the faces sequentially starting from 1,
and number the four edges of each face counterclockwise from O to 3.
For example, the cube shown in figure 8.4 has as its atlas

-

[[1 0] [6 2]] [[1 1] [4 3]] [[1 2] [2 0]] [[1 3] [3 1]]
[[2 1] [4 2]] [[2 2] [5 0]] [[2 3] [3 2]] [[3 0] [6 3]]
[[3 3] [5 3]] [[4 0] [6 1]] [[4 1] [5 1]] [[5 2] [6 0]]

308 Piecewise Flat Surfaces

y

wo4
LI.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

A Program 309

331
o

2

32'
o

3

2

o

2

36'
o

35,
o

2

34'
o

Figure 8.4
A cube and its corresponding atlas.

This is interpreted as "edge O of face i is matched with edge 2 of face
6" and so on.

We will design the program so that all information needed about the
surface will be contained in the atlas. Programs for different surfaces
will be identical, except for the fact that they consult different atlases.
(This is another advantage of displaying only one face at a time on the
screen.) So the first building block in our program should be a method
for consulting the atlas, a procedure called LOOKUP which takes as its
input a pair [FACE EDGE] and returns the matching face and edge. The
details of how LOOKUP works will depend on how the atlas is represented
in the computer (see exercise 2). The important thing to remember is
that a modular style of programing ensures that the rest of the turtle
program is independent of these details. We need only assume that
we have some kind of LOOKUP procedure that works; we can deal with
considerations of precisely how it works as a separate problem.

Since each individual face of the surface is fiat, the turtle state is much
the same as for the ordinary planar turtle. We have to keep track of the
position and heading, for example, by POSITION and HEADING vectors, as
explained in chapter 3. Notice that the RIGHT and LEFT commands work
exactly as for the planar turtleall they do is rotate the HEADING vector.
Besides position and heading, we need to keep track of CURRENT . FACE,

the number that specifies which face of the surface the turtle is on.

8.1.2 Maintaining the Display

The problem of maintaining the computer display in this program breaks
up into two parts. First, we must draw the turtle's path as it moves

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

310 Piecewise Flat Surfaces

Figure 8.5
Sample path stored as [[y1 v2 v3] [V4 V5 y6] [V7 v8 vg] 1.

on the screen. This is relatively straightforward. Each face appears as
a square on the screen, and as long as the turtle remains within this
square we can handle things just as for the planar turtle. In particular,
the coordinates of the turtle's POSITION vector can be taken to be the
usual display coordinatés.

The second and trickier problem is to keep track of the lines drawn by
the turtle on a particular face and redraw them when the turtle returns
to that face. We can do this by recording for each face a list of turtle
paths, where each path is itself specified as a list of vectors representing
positions. For example, in the list [[vi y2 y3] [y4 y5]], the first
sublist, [y1 y2 y3], is a list of three points to be connected by lines
in a sequence. The next sublist is another such plot. Of course, there
may be more sublists (see figure 8.5). A PENDOWN command (or coming
onto a new face with the pen down) should start one of these sublists.
When the pen is down, a FORWARD command should add a point to the
last sublist. Note that each y is a vector which, using the techniques of
chapter 3, may itself be represented as a list of two coordinates.

There is a complication in saving and redrawing these paths: The face
need not appear on the screen with its zero edge at the bottom. In fact,
a particular face may appear on the screen in any one of four different
orientations. So the "same" stored turtle paths as specified by the y may
have to be drawn on the screen in different ways (figure 8.6). We'll solve
this problem by using a different coordinate system for storing the points
y. Instead of display coordinates, which specify the z, y coordinates
of points as drawn on the screen, we'll use "face coordinates," which
are an z, y coordinate system having the O and 1 edges of the face as
axes. The advantage of these coordinates is that lines will be stored in
a form independent of the orientation of the face on the screen when

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

A Program 311

Figure 8.6
The same path may appear on the screen in different orientations.

the lines are drawn. The appearance of the face on the display screen
in different orientations will be reflected in the program by different
transformations between face and display coordinates. So, whenever we
wish to record the turtle's position in one of the lists, we first translate
the turtle's POSITION vector (which is kept in display coordinates) into
face coordinates. When we redraw the stored paths, we must translate
the y into display coordinates.

To accomplish these coordinate translations, we must keep track of
how the face appears on the display screen. Think of the square drawn
on the display screen as a "face" in its own right, with its own edges
numbered. (We'll refer to the edges of the display square as "slots" to
distinguish them from the edges of the atlas faces.) We can specify how
a face appears on the display by noting which display slot corresponds to
edge O of the face. Our program will keep track of this ZERO. EDGE. SLOT.
If we know ZERO . EDGE. SLOT then we can compute the transformations
between face and display coordinates as follows: Let A be the angle
(ZERO . EDGE. SLOT) X 9O. Then transforming face coordinates to display
coordinates is simply a matter of rotating counterclockwise through
angle A about the center of the screen (figure 8.7). Provided we choose
(O, 0) to be the center of the square, we have

display coordinates = Rotate(face coordinates, A),

and the opposite transformation is therefore given by

face coordinates = Rotate(display coordinates, A).

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Rotate 900

Piecewise Flat Surfaces

Figure 8.7
To transform from face coordinates to display coordinates, rotate counterclockwise
through ZERO. EDGE. SLOT X 90°. (a) Picture on face. (b) As it appears on display with
ZERO.EDGE.SLOT= 1.

If you prefer formulas expressed in terms of x and y coordinates, you
are welcome to derive them by applying the rotation formula of 3.1.3.
The answers, expressed as computer procedures, are the following:

TO DISPLAY.COORDS.OF [X Y]

RETURN [(x*COS(A) - y*SIN(A)) (y*cOS(A) + X*SIN(A))]

TO FACE,COORDS.OF [X Y]

RETURN [(x*COS(A) + Y*SIN(A)) (Y*COS(A) - X*SIN(A))]

With this outline, we'll leave to you (exercise 3) the task of writing
the following subprocedures to be used by the piecewise square turtle
program:

RECORD.POSITION, which takes the turtle's current POSITION, trans-
lates it into face coordinates, and adds it to the last sublist in the list of
paths associated with the current face,

START. NEW. PATH, which starts a new sublist in the list of paths as-
sociated with the current face, and

DRAW.PATHS, which clears the screen and draws all the paths saved
for the current face (after translating the saved points into display coor-
dinates).

8.1.3 Implementing the FORWARD Command

The main problem in implementing the FORWARD command is to deter-
mine if the turtle's path intersects one of the edges of the display square,
and, if so, to shift to the new face. This is much the same kind of com-
putation that we had to do for the cube in chapter 7, and we can use the
same method to do most of the work. We need a CHECK. INTERSECTIONS

procedure that takes the turtle's current position and the endpoint of
the proposed FORWARD walk as inputs and does one of two things:

o2 I
3

312

2

3 HI!
o

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

A Program 313

(c) (d)

Figure 8.8
The correspondence between display slots and face edges is given by EDGE = SLOT -
ZERO.EDGE.SLOT (mod 4). ZERO.EDGE.SLOT = O in (a), i ïn (b), 2 in (c), and 3 in (d).

If the line joining the two points does not intersect any of the edges of
the display square (the "slots"), then CHECK.INTERSECTIONS should set
the variable RESULT equal to the message "NO INTERSECTIONS."

If the line does intersect one of the slots, then CHECK. INTERSECTIONS

w.l1 set RESULT to "INTERSECTION FOUND." In addition, the variables
SLOT.HIT, INTERSECTION, and FRACTION will be set to the number of
the slot hit, the intersection point of the turtle's path with the slot, and
the fraction of the turtle's path that was traveled before the intersection
occurred.

We'll leave CHECK. INTERSECTIONS as an exercise for you. It is virtually
identical to the analogous program developed for the cube in 6.1.3.

When the turtle's path intersects a slot, the first thing to do is to
compute which edge of the current face this corresponds to, via the
formula

EDGE.HIT = SLOT.HIT ZERO.EDGE.SLOT (mod 4).

For example, if the turtle goes off the top of the screen (slot 2), and
ZERO . EDGE. SLOT is 3, then that corresponds to crossing edge 2 - 3
1 = 3 (mod 4) (see figure 8.8). Once we know which edge is crossed,

33

O

O

2

2

o

2

3

(a)

3

2

o

2

3

o3

2

o

o

3

2

(b)

3

2

o

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

314 Piecewise Flat Surfaces

2?
Figure 8.9
Turtle trek on a cube. Notice that crossing an edge always appears as a wrap on the
screen.

the new face and edge hit can be found in the atlas with the LOOKUP

procedure of 8.1.1. Because of the way face transitions are displayed,
turtle heading (as seen on the display) doesn't change in going to the
new face, and the turtle's new position is just a wrap on the display
square, as shown in figure 8.9. However, the new ZERO . EDGE. SLOT must
be computed. This can be done as follows: Suppose the new display slot
to which the turtle has wrapped is called NSLOT (NSLOT = SLOT. HIT +2

(mod 4)). Then

new ZERO . EDGE. SLOT

= NSLOT - (new edge number as found in the atlas) (mod 4).

So the complete computation of the parameters for the new face is

TO COMPUTE. FACE. PARAMETERS

EDGE.HIT . REMAINDER (SLOT.HIT - ZERO.EDGE.SLOT, 4)

[NEW.FACE NEW.EDGE] LOOKUP [CURRENT.FACE EDGE.HIT)

NSLOT i- REMAINDER (SLOT.HIT + 2, 4)

ZERO.EDGE.SLOT REMAINDER (NSLOT - NEW.EDGE, 4)

Next we use the DRAW.PATHS procedure (subsection 8.1.2) to redraw
the paths that were recorded for this face. The final step, as with the
cube program, is to go FORWARD the distance remaining, computed from
FRACTION.

Here is the complete program for moving FORWARD on a piecewise
square surface:

/2
36'

o

2

341

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

A Program 315

TO FORWARD (DIST)

ENDPOINT i- POSITION + DIST*HEADING

CHECK. INTERSECTIONS (POSITION, ENDPOINT)

IF RESULT = "NO INTERSECTION"

THEN FORWARD. WITHIN. FACE (ENDPOINT)

ELSE FORWARD.ACROSS.EDGE

You can see how similar this is to the cube implementation given in
subsection 6.1.6. FORWARD calls two main subprocedures. The first, used
when the turtle does not leave the current face, merely moves the turtle
to the new position and records the position in the list of vertices:

TO FORWARD. WITHIN. FACE (NEW. POSITION)

MOVE.TO NEW.POSITION

POSITION NEW.POSITION

RECORD. POSITION

The MOVE. TO procedure above, as in section 6.1, simply moves the turtle
to the new screen coordinates and draws a line if the pen is down. We
will use below a JUMP . TO procedure, which is almost like MOVE. TO except
that it never draws a line.

When the turtle does cross an edge, we first move the turtle forward
to the edge, then determine the new face and face parameters, erase
the screen, and redraw any previous paths that should appear on the
new face. The turtle's initial entry position on the new face is found by
wrapping across the display square from the intersection point. So we
move the turtle there, start a new sublist in the list of paths, and go
forward the distance remaining:

TO FORWARD.ACROSS.EDGE

FORWARD. WITHIN. FACE (INTERSECTION)

COMPUTE. FACE . PARA1ETERS

CURRENT.FACE NEW.FACE

DRAW. PATHS

POSITION - WRAP (POSITION)

JUMP.TO POSITION

START . NEW. PATH

FORWARD (DIST * (1 - FRACTION))

We'll leave to you the details of allowing for PENIJP and PENDOWN. You

will also need to determine appropriate initial values for the necessary
parameters.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

316 Piecewise Flat Surfaces

8.1.4 Starting to Explore: Surfaces with Only One Face

We invite you to fill in the details in the preceding sections and begin
your own computer investigation of piecewise square surfaces. You may
want to embellish the basic programfor example, by displaying the
current face number on the screen. Alternatively, you might not display
this information, and then challenge a friend to figure out the geometry
of an unknown surface by steering a turtle around on it. To get you
started on your exploration, we'll acquaint you with two surfaces that
can be made with one square face.

Pointy Sphere
Figure 8.lOa shows the edge-gluing corresponding to the atlas

[[1 0] [11]] [[1 2] [1 3]].

Since the edges of the square are glued in pairs, the resulting surface
has only two distinct edges. Two of the four vertices of the square are
merged by the gluing, so the surface has three distinct vertices, as shown
in figure 8.lOb. The figure shows turtle paths around the three vertices.
By counting total turning you can see that two of the vertices have excess
3ir/2 and the remaining one has excess ir. Therefore, the surface has
total curvature 4ir. Topologically, the surface is equivalent to a sphere,
as illustrated in figure 8.lOc.

Flat Torus
If we glue opposite edges of the square, that is, if we glue according to
the atlas

[[1 0] [1 2]] [[1 1] [1 3]],

we get a surface with two edges and one vertex which is topologically
equivalent to a torus (figure 8.11a). Can you see that the surface has
only one vertex? Counting vertices is not always easy, since what appear
as separate vertices on the individual faces may actually become one via
gluing.

One interesting fact about this torus is that the total turning for a
turtle moving around at its single vertex is 2ir, and hence the excess is
zero, so the surface is fiat near the vertex (figure 8.11b). Since it is also
fiat away from the vertex, we see that this torus not only has zero total
curvature (as does any torus), it has zero curvature density everywhere.
Every closed path has a multiple of 2ir for total turning.

But how can there be a torus that is fiat everywhere, when all the tori
we've ever run across (for example, in chapter 5) have regions of both

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

A Program 317

(b)

(e)

Figure 8.10
(a) Gluing the sides of a single square in accordance with the atlas [U 0] [1 1]]
[[1 2] [1 3]]. (b) Closed paths and total turning around the three vertices of the
surface. (c) The surface is topologically equivalent to a sphere.

Closed path around
A (T T 7r/ 2)

Closed path
oround C
(TT 7r)

Closed path around B
(TTr lr/2

C

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

318 Piecewise Flat Surfaces

V

Edge b

(a)

V

V'

Edge b a

b\j

VI

V V

V Single vertex

Figure 8.11
Gluing opposite edges of a square gives a torus with two edges and a single vertex.
A closed path around the single vertex has total turning 2ir and hence excess O.

positive and negative curvature? The answer is that, although this flat
torus is topologically equivalent to an ordinary "inner tube" torus (both
can be constructed from the same square, making the same gluings),
nevertheless the two tori are different geometrically.

Examine figure 8.12, which shows in detail the construction of an
ordinary torus by starting with a square sheet of rubber and physically
making the gluings indicated in the atlas. First glue edges O and 2
together to make a tube. Next, bend the tube around to glue 1 and 3

V V

(b)

£2 4

3 3

4

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

A Program 319

Lines must be shrunk here

Lines must be stretched here

Figure 8.12
Bending a square into a torus requires us to distort distances. (No stretching is
required to get from the square to the cylinder.)

together. In doing this second step you must stretch the tube and make
the curvature density positive on the outside and negative on the inside.
Of course, the total curvature must be zero because the resulting surface
is topologically a torus. But geometrically, it is not the same torus as the
flat one described by the above atlas and simulated by using that atlas
in the program of the previous sections. Distances and the distribution
of curvature density have changed.

We have seen topologically identical, yet geometrically different sur-
faces before. The new twist in this is example is that it is impossible to
fit a flat torus into three-dimensional space without distorting distances.
(This follows from exercise 12 of section 5.3). Nevertheless, the square
together with the atlas which matches edges defines a perfectly consis-
tent world for a turtle to live in. You can predict the result of every
walk or turn a turtle might take with no difficulty. Intrinsically (from
the turtle's point of view), the surface makes perfectly good sense; your
extrinsic three-dimensional perspective makes it hard to imagine what
the fiat torus looks like. (A flat torus will fit in four-dimensional space,
and there one can deform back and forth between fiat and "inner tube"
tori.)

Note the phenomenon exhibited here: Trying to make a model of the
surface by actually bending and gluing (in your head or with a paper

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

K
Figure 8.13
Rectangular parallelopipeds.

or rubber sheet) may require distorting the surface depicted in an atlas.
And yet the atlas itself defines a perfectly good surface. Because of this,
mathematicians are satisfied to declare that the two edges marked in
an atlas are "the same." That is called identifying (as in "making the
same"). The process of visualizing the actual bending and gluing is not
necessary; it becomes merely an optional (and only sometimes possible)
procedure to help you visualize such surfaces.

Exercises for Section 8.1

[P] Describe in detail an atlas representation and the associated
LOOKUP procedure. How efficient is the procedure? That is, how many
atlas entries must you inspect (on the average) before you find the
information you're looking for? Can you think of a way to speed things
up?

[P] One common way to speed up information retrieval is to store
the answer to each possible question and then label the answer by
the question. Sometimes this is too expensive in prior computation
and storage. In the case of an atlas, neither of these is trueprior
computation is minimal, and there are only twice as many questions as
pairs of sides in an atlas. Implement a LOOKUP procedure that uses this
method and therefore requires no search time at all. [H]

[P] Implement the procedures RECORD. POSITION, START . NEW. PATH,

and DRAW. PATHS described in this section.

[P] Modify the FORWARD implementation described in 8.1.3 to include
PENUP and PENDOWN commands.

[PD] Use your piecewise square surface programs to investigate the
geometry of rectangular parallelopipeds (figure 8.13). What are the
analogs of the phenomena we found in the geometry of the cube? In

320 Piecewise Flat Surfaces

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

A Program 321

Figure 8.14
An n-holed torus and a topologically equivalent piecewise-square version.

particular, which headings give closed monogons? (Compare subsection
6.3.2,)

[PD] We saw in 6.3.3 that any looping program that closes in the
plane will also close on the cube but may take as much as four times as
long. How does this generalize to rectangular parallelopipeds?

Describe a family of atlases that give n-holed tori, as shown in figure
8.14.

[D] What is the minimum number of square faces needed to make an
n-holed torus? Can you prove that? [HA]

[D] Show that, if we allow faces that are arbitrary topological disks
(rather than just squares), an n-holed torus can be made with one face
and 2n pairs of matching edges. [A]

[P] Look at the vertices of large POLYs drawn on the fiat torus.
Explain the qualitative features (such as symmetry) of the distribution
of dots. Explain the placement of the "center" of the distribution.
(Calculate it in advance.)

Is it true that there is a turtle line of shortest distance between any
two (nonvertex) points of a piecewise flat surface? [A]

[P] Subsection 5.3.3 described the handle-attaching process, which
changes the topological type of closed surfaces. For a piecewise square
surface this involves removing two faces that have no edge in common
and replacing them with a handle. Write a computer program that takes
as input an atlas for a piecewise square surface and returns a new atlas
describing the surface "with a handle attached."

[P] Use your program to construct a surface consisting of some spe-
cified number (say, four) of square faces. Challenge a friend to determine
its topological type as quickly as possible. Let your friend prepare by
writing whatever turtle procedures he or she would like to use as an aid
in the exploration. Can you do better?

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

b

C

o

d

322 Piecewise Flat Surfaces
C

(a) (b)

Figure 815
Atlases for (a) a cube and (b) a tessaract.

[P] Generalize the program of this section to allow as faces other
regular polygons besides squares. Investigate, in particular, piecewise
triangular versions of spheres and n-holed tori. Further generalize the
program to handle arbitrary piecewise flat surfaces.

Show that an edge of a piecewise flat surface formed by gluing
together two planar pieces along a straight edge can have no concentrated
curvature except at the vertices. [HA]

[DD] Imagine what it would be like to construct a closed surface by
identifying two faces along edges with different lengths. (It seems hard
to visualize this identification as a gluing process; just think of this as an
abstract identification.) Suppose, for example, we identify the edge of a
square of side 100 with the edge of a square of side 50. A turtle crawling
along the surface finds that, one side of the edge, each turtle step is

of the way across a face, while on the other side each step is ¿ of
the way across a face. Is it still true that the surface is flat except at
the vertices, or is there concentrated curvature along the "funny" edge?
What does a turtle line look like near this edge? If the line crosses the
edge making an angle of A as measured on the 100-unit face, then what
angle should it make as measured on the 50-unit face? [HA]

[PD] You can generalize a piecewise flat surface simulation to a
piecewise flat space simulation in which to fly a three-dimensional turtle.
Figure 8.15 shows an atlas for a tessaract (the three-dimensional equiv-
alent of the surface of a cube) constructed in strict analogy to the way
in which a cube's atlas is made from squares: Glue six solid cubes onto
the faces of a central cube, close up the gaps, and identify the six faces
of an eighth cube with the six open faces left from the previous steps.
Explore the geometry of the space interior to those cubes.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Orientations 323

1234

234 4321
(a) (b)

Figure 8.16
(a) Orientation preserving identification. (b) Orientation reversing identification.

8.2 Orientations

The program outlined in the preceding section will enable you to con-
struct a wide variety of piecewise flat surfaces, especially if you generalize
it so that faces can be arbitrary polygons rather than just squares. But
there are still other piecewise flat surfaces, and even piecewise square
surfaces, that the program can't represent. In designing the program,
we overlooked an important fact about edge identification: There are
two different ways to identify a pair of edges, and our representation
has ignored the second way. The first kind of identification, shown
in figure 8.lGa, is what we've been doing all along. This is called
orientation-preserving identification. But figure 8.16b illustrates another
possibility; the edges may be identified in an inverted manner. This
is called orientation-reversing identification. In the general case you
can recognize orientation-reversing identifications as follows: Draw ar-
rows on the two identified edges in the atlas to indicate directions of
identification; then orientation-reversing identifications have both arrows
pointing with the same senseeither clockwise or counterclockwise-
around their respective faces. If one arrow points clockwise and the other
counterclockwise, the identification is orientation-preserving. Including
orientation-reversing identifications in our atlases enables us to construct
new surfaces, including some mathematical curiosities called non ori ent-
able surfaces.

8.2.1 Nonorientable Surfaces

234
I- I I r

If you take a square and identify a pair of opposite sides in an orientation-
preserving way you get a cylinder, just as we did in the first step of

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 8.17
A Möbius strip, and a turtle path that confuses left and right.

constructing the flat torus. But suppose instead that you identify the
edges with the orientation reversed. Try it with a strip of paper. The
identification amounts to making a half-twist in the strip before gluing
the edges together. The resulting (nonclosed) surface is called a Möblus
strip.

Figure 8.1T shows t.he strange phenomenon observed by a turtle living
in a Möbius strip. The turtle starts out at some point and takes a trip
all the way around the strip. When it gets back to its initial position,
it finds that left and right are reversed! Let's inspect this turtle trek
in the atlas representation of the Möbius strip. The turtle crosses, say,
edge number 3 with vertex V to its left. Having crossed the edge, the
turtle still sees that its left side is the one closer to V, as shown in figure
8.18a. If you ask the turtle to turn left it will of course turn towards
its left side. But that now appears as a right turn on the map (figure
8.18b). The turtle, having no external reference, won't have noticed that
change. However, by walking down and across to the original position
and checking the skid marks made in some previous left turn, even the
turtle will be able to see that "left" is no longer the same direction as
before (figure 8.18c).

The root of the problem is that right and left are not intrinsically
defined. Start again with a turtle in the center of a square. A LEFT
command results in a left turn from your point of view. But suppose
you look at that same square from the other side. Now a LEFT command
produces what looks like a right turn (figure 8.19). Whether a turn looks
left or looks right depends on which side you are looking fromit is

Turtle starts here

Turtle ends with right and
left reversed

324 Piecewise Flat Surfaces

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Orientations

w

t

V

(a)

Figure 8.18
Confusing right and left on a Möbius strip, shown in the atlas representation. (a)
Turtle crosses edge with V to its left. (b) V remains to its "left," which now appears
as "right" on the map. (c) Returning to the original position, turtle discovers that
right and left have been reversed.

A

V W

W V

(b)

B's view

B

Figure 8.19
Whether the turtle is turning right or left depends on which side you look from.

V

W

W

325

V

't n-
t--

_J_J

) -J-J
.

w

(c)

V

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

al

Atlas for Möbius strip

Figure 8.20
Comparing a torus and a Klein bottle.

aat

b-

b

ta

Extra identification gives Klein bottle

an extrinsic property of the surface. It depends on setting up an exter-
nal referenceare you looking from the top side or the bottom side?
(Remember, the turtle is a two-dimensional creature who lives in the
Möbius strip rather than "on top of" or "underneath" it. The turtle
has no preference about whether you look at the strip from the top or
bottom.)

So, properly speaking, right and left are only characteristics of the
turtle's motions, not characteristics of the surface. We can define right
and left on the surface with respect to a turtle that knows its left from
its right. But this definition works only locally. You cannot look at some
point of the surface and decide a priori that one direction is either right
or left. You must first move the turtle there. And there is nothing to
guarantee that, as the turtle moves around the surface, the commands
LEFT and RIGHT will pick the same directions each time the turtle returns
to a given point. This potential confusion is precisely what happened on
the Möbius strip.

Of course, it may just happen that you have a surface on which left
and right never get mixed up in this way. In that case, the surface is
said to be orientable, and we could set up a consistent left and right

326 Piecewise Flat Surfaces

Atlas for cylinder Extra identification gives torus

b

b

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Orientations 327

Figure 8.21
Folding a cylinder into a Klein bottle. Matching the directions on the arrows requires
sticking the bottle through itself.

definition on the surface by watching the turtle. In a case where the
turtle can take a trip that confuses left and right, the surface is called
non ori entable.

All of the closed surfaces we've run across so far have been orientable.
That's hardly surprising, since the classification theorem we mentioned
at the end of chapter 5 guarantees that any closed surface that fits
into three-dimensional space must be a sphere with handles, which is
orientable. (A sphere is orientable, and it is not hard to show that
adding a handle cannot change that.) The Möbius strip does fit into
three-dimensional space, but it is not closed. To transform it into a
closed surface, we can make an orientation-preserving identification of
the top and bottom edges on the atlas, in exactly the same way as
produces a torus from a cylinder (see figure 8.20). The resulting surface
is called a Klein bottle. Like the Möbius strip, it is nonorientable.

Can you make a topological Klein bottle out of this atlas by actually
bending and gluing a piece of rubber the way we did for a torus? What
we said above implies that you can't, in three-dimensional space. Let's
try to see why not. Gluing the horizontal edges is no problem. But if we
continue as with the torus the directions for the edge identifications will
not be correct. Instead, we must get one of the edges turned around as
shown in figure 8.21. That involves sticking the bottle through itselfa
rather unseemly thing to do, but the best that can be done in three
dimensions. The Klein bottle will not fit without self-intersections into
a three-dimensional space (even topologically; that is, even if we allow
bending and denting to distort distances on the surface). Contrast that
with the flat torus of subsection 8.1.4, which won't fit into three dimen-

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Piecewise Flat Surfaces

[[1 0] [11] +1] [[1 2] [1 3] +1] [[1 0] [1 2] +1] [[1 1] [1 3] +1]
Sphere Torus

[[1 0] [1 2] +1] ([1 1] [1 3] ---1] ([1 0] (1 2] 1) [[1 1] [1 3] 1]
Klein Bottle Projective Plane

Figure 8.22
Atlases for four one-faced closed surfaces.

sions either, but will fit after being distorted into an ordinary "inner
tube" torus.

If we start with a Möbius strip and close it up by making a second
orientation-reversing identification, we get still another surface, called
the projective plane. The projective plane, it turns out, is nonorientable
and topologically distinct from the Klein bottle. Can you convince
yourself of this?

8.2.2 A Program for Nonorientable Surfaces

It is not hard to extend the program sketch of section 8.1 to handle
nonorientable surfaces. As before, we'll keep things simple by consider-
ing square faces only. The difference between this program and the one
in 8.1 is that we must account for the possibility of edges identified
in an orientation-reversing way. So our atlas must specify not only
which edges are identified, but also whether the orientation is reversed.
We'll indicate this by including a +1 or a 1, which we'll call the
transition parity, in each atlas entry. A typical entry might look like
[[2 1] [4 2] 1], which specifies that face 2, edge i is identified with
face 4, edge 2 with the orientation reversed. Figure 8.22 illustrates the
atlases for the four one-faced closed surfaces we've met so far: sphere,
torus, Klein bottle, and projective plane.

2

A 3 I
A

o

y

2

3 I

o

y 3

o

4
2

328

2

3 I

o

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Orientations 329

V

(b)

Figure 8.23
Crossing the edge of a Möbius strip as displayed by the program. (a) View "from
above"; (b) View "from below." Note that edge crossing always moves the turtle by
an ordinary wrap on the screen.

To generalize the program of section 8.1, we need to describe what
to do when the turtle crosses an edge with negative transition parity.
We will still handle the display so that the turtle's new position on the
display screen is obtained by an ordinary wrap. (This is dictated by the
design philosophy of "as the turtle sees it"; it ensures that we do not
suddenly see LEFT become a right turn.) Thus, when parity is reversed
we should display the face with the edge numbers increasing clockwise
rather than counterclockwise. (That is, when orientation is reversed,
continuity of turtle's viewpoint requires us to regard the new face "from
below" rather than from the standard atlas view "from above.") Figure
8.23 shows how the turtle trek on the Möbius strip would appear in this
representation.

So, in addition to CURRENT.FACE and ZERO.EDGE.SLOT, the program
needs to keep track of the parity (P ±1), which tells the orientation
for displaying the current face. Other than that, the program is the
same as before, except that parity considerations change the formulas
of 8.1.3 as follows: When a screen boundary is crossed, the edge hit is
given by

EDGE. HIT = (P X SLOT. HIT) - ZERO. EDGE. SLOT (mod 4).

The new parity and ZERO . EDGE. SLOT are given by

(new P) = (old P) X (transition parity, from atlas),
(new ZERO . EDGE. SLOT)

= NSLOT - P X (new edge as found in the atlas) (mod 4).

w

t

V

(a)

V

3

2

o

w

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

330 Piecewise Flat Surfaces

The correspondence between face coordinates and window coordinates
becomes

TO DISPLAY.COORDS.OF [X Y]

RETURN [(p*X*COS(A) - y*SIN(A)) (y*COS(A) + p*X*SIN(A)))

TO FACE.COORDS.OF [X Y]

RETURN [P*(X*cOs(A) + Y*SIN(A)) (Y*COS(A) - X*SIN(A))]

Exercises for Section 8.2

i. [D] List all possible atlases that give closed surfaces with one square
face. Sort them according to topological type. How many of each type
are there? [A]

2. Show that the Klein bottle we constructed in the text has zero
curvature density at every point, just like the flat torus. IHA]

3. How many vertices does the projective plane we made out of one
square have? What is the total curvature? Demonstrate that the projec-
tive plane is nonorientable by finding a closed turtle path that confuses
left and right. [A]

4. Convince yourself that the "bottle" shown in figure 8.21 really can
be cut open to give the Klein bottle atlas. Identify where the cuts are
on the figure.

5. Suppose we have an atlas that includes only orientation-preserving
identifications. Prove that the resulting surface actually is orientable by
constructing a global definition for right and left that is consistent over
the whole surface. [HA]

6. The fact that an atlas for a surface contains orientation-reversing
identifications does not necessarily imply that the surface is nonorient-
able. Consider the atlas with two square faces:

What surface (topological type) does this describe? [A]

7. Pretend that the Klein bottle pictured in figure 8.21 is a real bottle
(that is, ignore self-intersections). Observe that has no inside or outside.
Just as with orientation, you can declare one side to be the "inside" in
some locality and propagate that from place to place. But you will find

[[1 0] [1 2] +1] [[2 0] [2 2] +1]
[[1 3] [2 1] 1] [[1 1] [2 3] 1]

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Curvature and Euler Characteristic 331

that the propagation eventually comes back to contradict itself, just like
orientation. Describe in detail a propagation of "inside" and show how
it comes to contradict itself. (In other words, if you set out to paint the
entire "inside" of a Klein bottle, you'll end up painting the "outside" as
well.) Note that if a surface does have an inside and an outside, you can
find a consistent orientation by specifying left to be "left as viewed from
the outside." Convince yourself that this extrinsic criterion, "having an
inside and an outside," does imply orientability.

[D] What topological closed surfaces can be made with two square
faces but not with one? [HA]

[P] What would it mean to say that the universe we live in is
nonorientable? What are some of the phenomena you might observe
in a three-dimensional nonorientable universe? [H]

[PD] Generalize your piecewise fiat space simulation (exercise lT
of the preceding section) to include nonorientable spaces, and explore
these.

8.3 Curvature and Euler Characteristic

Our investigation of surfaces, begun in chapter 5, has been rooted in
a theory of curvature. In this section we examine the curvature of
piecewise flat surfaces. In doing so we shall uncover a new topological
invariant called the Euler characteristic, which is expressed in terms of
the number of vertices, edges, and faces of a surface, and which turns
out to be a disguised form of our old friend the total curvature.

8.3.1 Curvature of Piecewise Flat Surfaces

As we noted at the outset of this chapter, all the curvature in a piecewise
flat surface is concentrated at the vertices. This makes the total curva-
ture easy to compute. We need only to sum up the excesses of small
turtle paths around each of the vertices:

K = (excess of a small path around the vertex).
vertices

(E is the mathematical sign for summation; vertices means to sum the
specified quantity over all the vertices.)

Let's try to transform this formula into the simplest, most meaningful
terms. Remembering that excess is equal to 27r minus the total turning,

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

V

Figure 8.24
Total turning around a vertex is equal to the sum of the interior angles of the faces
meeting at the vertex.

we can rewrite the equation as

K = (2r - total turning around the vertex>,
vertices

and separating out the 2ir terms (one for each vertex) gives the formula

K 2irV - (total turning around vertex>
vertices

where V is the number of vertices in the surface. This is better; the first
term is simple enough. Can we do something better with the second
term? We can, if we rewrite this formula using the fact that the total
turning around a vertex is equal to the sum of all the interior angles
meeting at that vertex (figure 8.24). Summing now over all the vertices
gives us all the interior angles of all the faces in the surface. If we
regroup these angles according to the faces they lie in, we can compute
total curvature as

K = 2irV - (sum of the interior angles of the face>.
faces

This is a somewhat surprising result, because we can compute the second
term without knowing how the edges are glued together. So if you have
all the individual faces of a piecewise flat surface, and somebody tells
you V, you can compute the total curvature without figuring out or
being told anything more about the atlas.

For piecewise square surfaces the formula is even easier, since the sum
of interior angles of any face is 2ir. Hence, K = 2irV - 2irF = 2ir(V -
F). Here we have a formula for total curvature that doesn't mention
angles at all! But we can do even better. Remarkably enough, it turns

332 Piecewise Flat Surfaces

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Curvature and Euler Characteristic 333

out that we can compute the total curvature of any closed piecewise
flat surface without knowing any angles. We need only know the total
number of faces and vertices and the number of edges.

Theorem For a closed piecewise flat surface with V vertices, E edges
and F faces, the total curvature is

K=2ir(VE+F).

Proof Since we already know that

K = 2irV - (sum of the interior angles of the face),
faces

the point of the proof is to show that the sum

(sum of the interior angles of the face)
faces

can be expressed independent of the particular values of the angles. Now
we don't know much in general about the sum of the interior angles of a
face, but we do know a closely related quantity: the sum of the exterior
angles. Since the boundary of each face is a simple planar closed path,
we know that the sum of the exterior angles is 2ir. To relate the exterior
angles to the interior angles, notice that each exterior angle pairs off with
an interior angle to sum to ir = 1800 and there are as many of these
pairs as there are edges to a face. Therefore,

(sum of the interior angles of a face)
(sum of (ir - exterior angle))

= ir X (number of edges of the face)
- (sum of the exterior angles of the face)

= ir X (number of edges of the face) - 2ir,

and so summing this quantity over all the faces gives

(sum of the interior angles of the face)
faces

= ir (number of edges in the face) - 2irF.
faces

Now we must simplify the sum

(number of edges in the face).
faces

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

334 Piecewise Flat Surfaces

The trick is to notice that, in a closed surface (once it is glued together),
each edge is shared by precisely two faces, and so summing the number of
edges in a face over all the separate faces counts each edge precisely
twice, and therefore

(number of edges in the face> = 2E.
faces

Combining this with the preceding equation yields

(sum of the interior angles of the face> = 2ir(E - F),
faces

and putting this into our formula for K gives the result

K = 2irV - (sum of the interior angles of the face>
faces

=2ir(VE+F).

8.3.2 Euler Characteristic

The quantity V - E + F is called the Euler characteristic of a surface
and is usually denoted by the Greek letter x (chi). Using this notation
we rewrite our curvature formula as

K=2ir(VE+F)=2ir.
You can think of this equation as a convenient way of calculating the
total curvature of a piecewise flat surface, but it is suggestive of much
more than that. After all, K is not just any number associated to a
piecewise flat surface; it has some special properties. First of all, K is
defined for all surfaces, not only piecewise flat ones. Moreover, as we
saw in section 5.3, K is a topological invariant. So our formula should
lead us to suspect that there must be some way to see that the Euler
characteristic also has these properties. That is, it is natural to ask the
following questions: Is there some direct way to see that V - E + F is
a topological invariant? Is there some way to define V - E + F for all
surfaces, not just piecewise flat ones?

Let's look at topological invariance first. What happens to VE+F
when we start bending, denting, stretching, and generally bashing up a
piecewise flat surface? (To be fair, until we deal with the second question
we should limit our zeal in deforming to leave the surface piecewise
flat.) The answer is: absolutely nothing! After all, V - E + F is just a
counting job, and unless we cut a face in two, remove an edge, or perform

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Curvature and Euler Characteristic.
(a)9
(e)

Figure 8.25
Nets on (a) a sphere with V = 1, E = 1, F = 2, and x = 2; (b) a sphere with
V_-6,Er_ 12,F=8,andx=2; (c)atoruswithV= 1,E=2, F=1,and
y = O; (d) a two-holed torus with V = 4, E = 8, F = 2, and y = 2.

some other such nontopological transformation, none of the numbers can
change. That answers the first question.

Now let's turn to the problem of defining V - E + F for an arbitrary
surface. The image of a distorted piecewise fiat surface makes a solid
suggestion as to what we should mean by vertices, edges, and faces on
a general surface: "Faces" on the surface will in general not be fiat
polygons but should be topological disks. "Edges" need not be straight
lines, but should be simple arcs with a vertex at either end. More
precisely, we define a net:

A net on a general surface is an arbitrary collection of simple arcs
(terminated at each end by a vertex) that divide the surface into topologi-
cal disks.

Figure 8.25 illustrates some nets on surfaces. We will continue to
call the constituents of a net edges, vertices, and faces, so that, given
a net, we can define the Euler characteristic x by the same formula,
X=VE+F.

The definition of Euler characteristic presents a problem: One can
draw infinitely many different nets on a given surface. How do we decide
which net to use in computing the Euler characteristic? The answer is:
It doesn't matter which one we choose! This is because of the following:

(b)

(d)

335

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

336 Piecewise Flat Surfaces

Delete edge ?

Delete vertex

Add vertex

-.--.--_.-______-.

Add edge

s

Figure 8.26
Elementary net transformations.

Theorem All nets on the same closed surface have the same Euler charac-
teristic.

Proof One way to prove this theorem is to imagine starting with a
particular net on a surface and transforming the net into a different net
by adding or deleting vertices or edges. Of the various ways we might go
about changing a net, we single out two elementary net transformations:
(1) Add (or delete) a face by drawing in (or erasing) an edge between
existing vertices. (2) Add (or delete) a vertex. These operations are
illustrated in figure 8.26. Let's see how these transformations effect the
value of x. Suppose we add an edge (a type i transformation). Then E,
the number of edges, certainly increases by 1. But the important thing to
notice is that F, the number of faces, also increases by 1. Hence, F - E
is unchanged. And since V is unchanged, we see that x V - E + F

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Curvature and Euler Characteristic 337

is unchanged by type 1 transformations. What happens if we add a
new vertex (a type 2 transformation)? This produces not only a new
vertex, but also a new edge. So under a type 2 transformation V
and E each increase by 1, and F is unchanged; hence, V - E + F
is again unchanged. In conclusion, we find that x is invariant under
net transformations of type i and 2. To complete the proof that any
two nets on the same surface will give the same value of x we claim
that, given any two nets, you can always get from one to the other by a
sequence of transformations of types i and 2. The proof of this fact is
not hard, and the details are left as an exercise (exercise 3).

So x = V - E + F can be defined for any surface and is a topological
invariant. This means we have two topological invariants for surfaces-
Euler characteristic and total curvatureand we know that K = 2irX
for piecewise flat surfaces. It seems natural, then, to conjecture that
K = 2ir for any surface. This is indeed the case, as expressed by the
following theorem:

Gauss-Bonnet Theorem For any closed surface, toual curvature and Euler
characteristic are related by K = 2ir.

Proof We'll sketch two different proofs of this theorem. The first is based
on the fact that K and x are both topological invariants. Suppose that
we start with an arbitrary surface and deform it into a piecewise flat
surface. Since K and x are both topological invariants, the deformation
leaves them unchanged. But we know from subsection 8.3.1 that K =
2ir for the piecewise flat surface. Therefore, this is true for the original
surface as well. The only catch in this proof is that we must show that
any surface can be deformed into a piecewise flat surface. Intuitively,
that seems very plausible; the idea is to flatten the surface piece by piece,
pushing all the curvature into the edges between the pieces, then flatten
the edges piece by piece, pushing all the curvature into the vertices. But
the details of this are hard to write out rigorously. Exercise 5 gives
pointers on how to do this. A second proof that K = 2ir is based
on a direct computation of K for any surface and is similar to the way
we proved the theorem for piecewise flat surfaces. This is outlined in
exercise 10.

The Gauss-Bonnet theorem is one of the key results in the geometry
of surfaces because it forms a bridge between quantities defined purely

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Delete edge

Figure 8.27
How can deleting an edge increase the Euler characteristic?

in terms of topology (such as Euler characteristic) and quantities defined
purely in terms of distances and angles (such as total curvature).

Exercises for Section 8.3

Calculate the Euler characteristics of the sphere, torus, Klein bottle,
projective plane, and two-holed torus. For each of these surfaces, draw
a net and compute V, E, and F. Remember the restrictions on what
can be a net. You might try to draw the simplest possible net that does
the job.

How does adding a handle to a surface (subsection 5.3.3) change the
Euler characteristic? Demonstrate explicitly how a net on the surface
can be modified to give a new net on the surface with handle attached.
[HA]

Complete the proof in 8.3.2 that Euler characteristic is a topological
invariant by showing that any two nets on a surface can be transformed
from one to the other by a sequence of elementary net-changing opera-
tions of types i and 2. [HI

Consider the planar net shown in figure 8.27. If we remove the
edge marked A, the Euler characteristic increases by i. Doesn't that
contradict what we said about removing edges not changing the Euler
characteristic? [A]

338 Piecewise Flat Surfaces

V=4 V=4
E=7 E=6
F=4 F=4
x=1 x=2

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Curvature and Euler Characteristic 339

a

C

Figure 8.28
Identifying the edges of an octagon to produce a closed surface.

[DDJ In the first proof of the Gauss-Bonnet theorem sketched above,
we assumed that any surface can be deformed into a piecewise fiat
surface. Show that this is true, at least for surfaces in three-dimensional
space. [HJ

Show from x = V - E + F that for a piecewise square surface we
have x = V - F, and hence that K 2ir(V - F). Generalize this to
express x in terms of V and F for closed piecewise fiat surfaces in which
all faces are n-gons. [A]

[D] Notice that K = 2ir(V F) gives bounds on the amount of
curvature in a piecewise square surface in terms of the number of faces
in the surface. For example, if there are two faces, F = 2, then V must
be at least i and at most 4F = 8. That puts K between 27r and 127r.
What is the actual range of values of possible K? Give answers here
both if you allow surfaces with more than one component (for example,
two separate spheres) and also if you require all surfaces to be in one
piece. [A]

[D] Rather than obtaining different values for K by increasing F
and keeping the faces all square, it is interesting to increase the number
of sides of a single-faced surface. Use the Euler characteristic to give
bounds on K for surfaces that can be made by identifying faces of a
single n-gon. [A]

[D] Show that the single-faced surface shown in figure 8.28 has
exactly one vertex and has the smallest possible total curvature among
all surfaces that can be made by identifying edges of a single octagon,
as established in exercise 8. In general, a single-faced surface with 4n
edges can be made into an n-holed torus. Show how, and verify that
the resulting figure is orientable and has the correct total curvature.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 8.29
Double cube.

Prove directly (by computing K as a sum) that K = 27rX for any
surface, provided the edges of the net are turtle lines. [H]

[D] Consider the "double cube" shown in figure 8.29, which consists
of two cubes with a vertex in common. How would you define total
curvature here? One might view the surface topologically as a sphere
with the equator pinched to a point, and so get K = 4ir. Alternatively,
one might take as curvature the sum for the two cubes, and so get K =
87r. Show, on the other hand, that x = 3 for this surface and therefore
the Gauss-Bonnet theorem is contradicted whichever of these values we
take for K. Mathematicians have gotten out of this bind by defining
the term "surface" to exclude objects like this. Can you come up with
a definition of the term "surface" that will include spheres, tori, cubes,
cones, and even Klein bottles and projective planes, but not this double
cube? [HA]

[D] We've already mentioned handle attaching as a general way of
modifying surfaces. Now we'll introduce another modification technique,
called adding a erosscap. Start with any surface and cut a square hole in
it as shown in figure 8.30. Now close up the hole by making orientation-
reversing identifications of the opposite edges. ("Adding" a crosscap is
really deleting part of the surface followed by identifying). What does
adding a crosscap to a surface do to the total curvature? What does
it do to the orientability of a surface? What surface (topological type)
do we get by adding a crosscap to a sphere? How about adding two
crosscaps to a sphere? [A]

[DD] Here's a problem to test your powers of visualization: Show
that starting with a surface, adding a handle, and then adding a crosscap
produces the same result (topologically) as starting with the original
surface and adding three crosscaps.

340 Piecewise Flat Surfaces

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Curvature and Euler Characteristic 341

(a) (b)

1u/1I/I1HHH

Figure 8.30
Adding a crosscap to a surface. (a) Cutting a hole; (b) The surface after the first
identification. The second identification cannot be realized in three dimensions
without self-intersections.

[D] A regular net is a collection of faces, edges, and vertices that
is "everywhere the same"each face has the same number of arcs, S,
along its periphery and each vertex has the same number of arcs, T,
leading away from it. Find all possible regular nets on a sphere. Draw
pictures of them. Compare these with the five Platonic solids (section
5.3, exercise 14), which, by nature of their definitions, define regular nets
on the sphere. You should find that there are more than five regular
nets. Why can't those other regular nets correspond to Platonic solids?
[HA]

[D] Show that there are an infinite number of regular nets (see above
problem) on a torus, but that there are only three allowable values for
S. [HA]

[D] Study regular nets in the plane. Let S = number of edges to a
face and T number of edges coming together at a vertex. Show that
there are regular nets with S = 3, 4, and 6. Show S = 8, T = 3 is
possible if you don't insist that the regions are congruent. Show that
S = 5, T = 3 is impossible in any case. Can you list all possible regular
nets? [HA]

[D] A regular tesselation (tiling) of a surface is a division of the
surface into a collection of congruent pieces. Therefore, any regular
tesselation defines a regular net. Show that in any regular tesselation of
the plane S must be 3, 4 or 6. [H)

I I

/1

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Curved Space and General Relativity

Things should be made as simple as possible, but
not simpler.

Albert Einstein

Chapter 8 used atlases to investigate piecewise flat surfaces, both in
designing computer simulations and in theorizing about geometry. This
chapter begins by discussing a similar technique for handling surfaces
that are curved everywhere. We then undertake a brief exploration of
higher-dimensional curved spaces. To emphasize an intrinsic point of
view, we'll speculate about the phenomena you might observe if the
three-dimensional space you live in were curved, and then if both space
and time were curved. Such speculation is not pure fantasyaccording
to Einstein's General Theory of Relativity, we do live in a universe
where space and time are curved. We discuss the basic, striking claim of
Einstein's theory: that the force of gravity is in reality no force at all, but
rather a manifestation of the curvature of space and time. In addition,
we describe some of the more subtle effects predicted by relativity, such
as the gravitational red shift and the "bending" of light. Finally, we
show how to implement a computer program that uses turtle methods
to simulate motion in a relativistic universe.

9.1 Wedge Representations

The technique we will use for exploring curvature, called wedge rep-
resentation, is a method for representing symmetric worlds. In most
cases the symmetry will be radial; that is, everything will "look the
same" along each line leading outward from some fixed "center" point.
Fortunately, this is sufficient for the General Relativity simulation we
will design later. But before venturing into curved space and time, we'll
discuss wedges in a more familiar setting by taking yet another look at
geometry on the surface of a sphere.

9.1.1 A Parable: At the Edge of a Wedge

A turtle once lived on a sphere. You and I can imagine the turtle's
world quite well. It is like the surface of a very round planet. But the

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

344

e

&

*

(a)

(c)

Curved Space and General Relativity

(b)

Figure 9.1
A "straight line" orbit on the turtle's flat map of its spherical world. (a) Turtle's
map. (b) Actual world. (e) Turtle map with "orbit."

turtle's view of its world was purely intrinsi; it knew nothing utside
of this two-dimensional surfaceonly where it walked and how mich it
turned. For most of its life the turtle experienced only local geometry,
for it lived very near the north pole and did not venture more than a
tiny fraction of the sphere's circumference away from home. The turtle
was a clever mathematician and had discovered many regularities about
walking and turning, which it called Euclidean geometry. It discovered
the Pythagorean theorem for right triangles. It knew that the total
turning around any polygon was 3600. None of the parallel lines it had
constructed ever met. Of course, none of these things could have been

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Wedge Representations 345

(a) (b)

Figure 9.2
The turtle surveys its world. (a) Dividing the map into regions. (b) Finding the
width of a region at a given distance from home.

exactly true, but the turtle's measuring instruments were not so precise
that it could detect any discrepancy.

One day the turtle decided to explore farther and farther away from
home. To keep records it sketched a rough map of its wanderings (figure
9.la). For a long time everything was just fine. But then the turtle went
so far as to reach the equator of the sphere and started walking along
it on a straight line. Lo and behold, the "straight line" led in a closed
path! What a perplexity!

The turtle stared at a sketch of this path on the map (figure 9.lc).
"How can this be?" it wondered. "It's as if some mysterious force were
pushing me and making me turn even though I was trying to walk in a
straight line. The force has made me orbit the north pole."

The mysterious force made the turtle nervous. It decided that it would
need a better map of these lands before venturing farther. So it divided
its current map into eight regions surrounding each of the eight compass
points pointing away from the north pole, and took to surveying each
wedge carefully (figure 9.2). The survey method was quite simple. First
the turtle marked the boundaries between the regions all the way out
to beyond the mysterious "orbit." Then it measured the width of each
region at various distances from home. The data were collected into
charts like this:

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Unit distance = loo turtle steps

Using the charts, the turtle constructed a small scale-model map of
each region. When the maps were finished, the turtle moved them
together to assemble a complete and detailed map of the whole known
world. But to its great surprise, the pieces of the map did not fit together
without leaving huge gaps (figure 9.3a). How could there be gaps when
the turtle had seen the regions connected?

"Let me look at what happens upon crossing an edge of one piece on
my map," said the turtle. "I didn't see any gaps, so these pieces must
touch out there." Pushing the pieces together, the turtle drew a straight
turtle walk as in figure 9.3b. But now the region near home, which it
knew so well, was split apart. This was even worse than the first try.

The turtle mused as it rearranged the pieces as in figure 9.3a so that
its home once more fit together properly. This made its "straight line"
path look like an orbit. "What if the world were really like this. What's
in those gaps? Who lives there? Someone, perhaps a demon. A demon!
That's it! There must be a demon there. A demon who hides in the gaps
and doesn't want anybody to know he's there. Perhaps he's responsible
for the force that turns me when I walk and try not to turn." The turtle's
mind ran quickly. "Yes, it must be a demon who wants no company in
the gaps of the world. What a clever demon! He always picks me up as
I reach the edge of a wedge, and moves me to the next wedge so quickly
that I never see it. And he turns me, too, so I never suspect that the
gaps are there. But I know better, thanks to my careful survey. The
mysterious turning force is the work of the demon."

The story is not quite at an end. The turtle carefully resurveyed
each wedge and found that it, too, must be made of wedges. All in
all, the turtle decided, the world is composed of many, many narrow

348

Distance
from home

Curved Space and General Relativity

Width of Distance Width of
region from home region

5 3.9 55 36.8
lo 7.8 60 38.9
15 11.6 65 40.7
20 15.3 70 42.2
25 19.0 75 43.4
30 22.5 80 44.3
35 25.8 85 44.8
40 28.9 90 45.0
45 31.8 95 44.8
50 34.4 100 44.3

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Wedge Representations 347

Wedges don't fit together.

Figure 9.3
Musing with map pieces.

wedges, with the demon acting almost constantly as the turtle walks.
The turtle thought and measured, but never found an inconsistency in
this belief. Distances measured on long walks were not Euclidean, but
the discrepancy could be accounted for by the demon's gaps. "Parallel"
lines became unparallel and met, but the amount of turning away from
parallel was always exactly demon turning. A demon acting as the turtle
theorized explained every feature of the geometry.

9.1.2 Symmetric Wedge Maps

You should recognize the turtle's map as an atlas similar to the atlases
for the piecewise flat surfaces of chapter 8. Actually gluing those wedges
together would give quite a good model of the sphere's geometry. Had
the turtle merely invented rules for the map that said "treat the pieces
as glued together, even though you don't see how they can be," then
we could hardly quarrel with this representation. But because the turtle
does not know about curved worlds, it is faced with a conflict between
maintaining its familiar flat geometry and maintaining the connectedness
of its experienced world. The response is to invent a demon. And one
can well understand how the idea of a demon reinforced the turtle's
initial interpretation that some "force" was making it turn in curved
paths even when it tried to walk straight.

The demon seems superfluous in mapmaking, but we will soon see
that it is easy to embody the demon as a "corrective process" that is the
difference between walking on a plane and walking on a curved surface.
Moreover, the idea of modeling a curved world as a flat one plus a very

'flying another fit.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

348 Curved Space and General Relativity

dependable "force" is, as we hinted, the essence of the General Theory
of Relativity.

As the turtle discovered, the use of a flat map to picture the geometry
of a nonflat surface becomes more and more satisfactory as the number
of wedges increases. The reason is that a very narrow wedge of the
actual surface needs to be distorted only slightly in order to fit onto a
planar map. In fact, we could imagine a completely accurate planar map
as consisting of an infinite number of infinitely thin wedges interspersed
with an infinite number of infinitely thin gaps. Looking at paths on
such a map, you would see no difference from a more ordinary map
which merely deforms some distances and angles when it depicts curved
surfaces.

This is the representation we shall use in our computer simulation.
The display screen will serve as the planar map, and we'll use this map
to watch the path of a turtle walking on the surface. We will observe
that the path of a turtle walking straight will not look straight on the
display screen (owing to the distortion in the mapping from surface to
plane, or, in other words, the workings of the demon).

If we were using a rough map with only a few wedges, then computing
the display image of the turtle's walk would be no problem. The turtle
would walk in a flat, Euclidean world so long as it did not cross the edge
of a wedge. When it did come to an edge, we could have the computer
simulate the "demon" by picking up the turtle and moving it from one
wedge to the next and turning it appropriately. This process would be
cumbersome for accurate maps with large numbers of thin wedges (not
to mention maps with an infinite number of infinitely thin wedges), so
we shall have modify the technique, but only slightly.

From the way the turtle made its map you can see that the map would
appear the same as an ordinary map that deforms the sphere into a plane
by stretching distances along latitudes but not along longitudes. Thus,
in going from sphere to map, circles drawn at various radii from the
north pole gain extra circumference but keep the same radius from the
north pole. For the time being we will consider only radially symmetric
surfaces like the sphere, and will always lay out wedges evenly so as
to preserve that symmetry on the map. That way radial distances will
never need any distortion, but distances on circles around the center will
be uniformly (at a given radius) stretched or shrunk. Figure 9.4 shows
another radially symmetric surfacea plane with a "hill" on it and
the corresponding wedge map.

The demon's corrective process (like all things turtle) has two parts:
moving and turning. Correspondingly, in simulating a radially sym-

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Wedge Representations 349

Figure 9.4
(a) A plane with a symmetrical hill in it. (b) Corresponding wedge map.

metric world we will have two functions that determine the distortion of
the circles around the central point: the ratio of the gap between wedges
to the thickness of a wedge and the amount of demon turning from wedge
to wedge. Both of these are given as functions of radius. Alternatively,
we can specify equivalent information by giving the circumference and
total turning, C(r) and TT(r) respectively, of circles of radius r as
measured on the surface. The equivalence between these two ways of
giving the information is expressed by the relation

quantity on the map = quantity on the surface + demon quantity

where quantity is either turning or distance.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

350 Curved Space and General Relativity

As an example, you may recall that we computed C and TT for a
sphere in subsection 7.3.5:

C(r) = 2irR sin

TT(r) = 27r cos

where R is the radius of the sphere and r is the radius of the circle as
measured on the sphere. If the map is scaled so that r is also equal
to the distance from the turtle to the central point as measured on the
map, then the corresponding circumference and total turning for circles
on the map are 2irr and 2ir. That leaves the differences, namely 2ir[r -
R sin(r/R)J and 2ir{1 - cos(r/R)], respectively, for total gap distance
and demon turning in going around a circle.

We can use this corrective process to develop a computer program
for displaying the map image of a turtle walking on the surface. The
procedure is this: Move the turtle a little bit at a time. Each little
piece of walk will consist of a short straight segment that represents
the actual walking on the wedges, plus two correction factors. If we
represent the turtle's heading (on the map) as a unit vector H, then
the actual walking that the turtle does in going a distance D can be
represented as a vector Realwalk = D X H. The first correction (a
move) we will call "leaping." It adds in the total amount of moving
done by the demon. The second correction (a turn) rotates the heading
by the total amount of "demon turning" done along the short path. We
treat these two effects separately.

Leaping
Figure 9.5a depicts a highly magnified view of a walk on a map made up
of many thin wedges. Observe that the walk is composed of two different
types of pieces: the real walking done on the wedges and the demon's
leaping done in the cracks. If we represent each piece as a vector, we can
take advantage of the commutativity of vector addition to reassemble
the pieces into a single "real walk" part and a single "leaping" part
(figure 9.5b). Thus we have the vector equation

Walk = Realwalk + Leap

where Walk is the turtle's total change in position on the map.
Now, the Leap vector can be constructed from the real walk as follows.

First project Realwalk onto the line perpendicular to the gaps (that
is, along the leaping direction, which is perpendicular to the radial

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Wedge Representations 351

Center is
far away

f

2

5

6

5

Total Width of
Wedge Traversed

(e)

Figure 9.5
(a) Wedge map path traversing three wedges and three gaps. (b) Uniting real walks
(1, 3, 5) and leaps (2, 4, 6). (c) Projecting to find the width of the wedges traversed.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

352 Curved Space and General Relativity

line from the map's center to the turtle) to find the total width of the
wedges traversed (figure 9.5c). Then just multiply by the ratio of gap to
wedge, which we call GAPRATIO. If you remember from chapter 3 how
to project vectors using dot products, you can easily derive the vector
equation

Leap = GAPRATIO X (S Realwalk) X S (1)

where S is a unit vector in the tangential direction (that is, pointing
perpendicular to the radial line). S gives the appropriate direction
for projection, and supplies the Leap vector with its direction as well.
GAPRATID can be simply computed as the ratio of that part of the map
circle that is not wedges to the wedge part:

GAPRATIO
27rrC(r) 27rr - (2)

Demon Turning
The turtle of our parable in 9.1.1 found that, even when it was walk-
ing straight, it accumulated some extra "demon turning" each time it
crossed a wedge. The total demon turning over a short walk is propor-
tional to the number of wedges crossed. If the wedges are infinitely thin
and uniformly spread out, then the number of wedges crossed in a short
turtle walk is in turn proportional to the central angle swept out by the
radial line to the turtle as it moves on the map. Thus we have

DEMUN.TURNING = CENTRAL.ANGLE X TURNING.PER.ANGLE. (3)

The TURNING. PER. ANGLE will, like the GAPRATIO, depend on the turtle's
distance r from the central point. We can compute TURNING.PER.ANGLE

if we know the total demon turning done on a circle, which has a central
angle of 271:

TURNING . PER. ANGLE
271 - TT(r) TT(n)

(4)
2ir 2ir

(This formula, like all formulas in this chapter, has angles expressed
in radians. You may want to convert to degrees for the computer
simulation.)

We can compute the central angle by using the unit tangential vector
S again. With what we learned about dot products and projections in
chapter 3 it should not be difficult to verify that the central angle for a
short turtle walk is approximately equal (see exercise 5) to

(1/r) X (Walk. S).

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Wedge Representations 353

9.1.3 A Computer Simulation

The above computations can be readily expressed in program form. As
with the turtle simulations we have already discussed, the turtle's motion
is kept track of by a position vector P and a heading vector H. The
basic command is WEDGEFORWARD, which moves the turtle on the map
corresponding to a "real" FORWARD on the surface:

TO WEDGEFORWARD D

REPEAT UNTIL D < SMALLDISTANCE

WALKSTEP SMALLDISTANCE

D D - SMALLDISTANCE

WALKSTEP D

The program walks a fixed small distance at a time until the amount
remaining to be walked is also small, then just walks that remaining
distance.

Walking a small distance entails the following steps:

Do a normal FORWARD on the map (and compute Realwalk, the vector
that describes this displacement).

Compute the parameters r and S. Leap according to equations i and
2 of 9.1.2 (and compute total map displacement, Walk = Realwalk +
Leap).

Rotate the turtle according to the demon turn computed using equa-
tions 3 and 4.

Finally, show the turtle at the resulting position on the display screen.

Here is the procedure:

TO WALKSTEP D

REALWALKSTEP D

COMPUTE. PARAÌETERS

DEMONLEAP

DEMONTURN

DISPLAY

Filling in the details in the subprocedures is simple:

TO REALWALKSTEP D

REALWALX D * l-I

P + P + REALWALK

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

354 Curved Space and General Relativity

TO DEMONLEAP

LEAP GAPRATIO * DOT(S, REALWALK) * S

WALK REALWALK + LEAP

p - p + LEAP

TO DEMONTURN

TURNING CENTRAL.ANGLE * TURNING.PER.ANGLE

H - ROTATE(H, TURNING)

The COMPUTE. PARAMETERS procedure computes the turtle's distance
r from the origin and the tangential vector S, and uses these to deter-
mine GAPRATIO and TURNING.PER.ANGLE. CENTRAL.ANGLE should be

computed after Leap. (See exercise 5 concerning S and CENTRAL . ANGLE.)

Observe that ordinary turtle (nondemon) LEFT and RIGHT turning is
implemented just as in the planar case, except that we must explicitly
update the heading vector H.

The surface itself is determined by specifying the functions TT(r) and
C(r), which will be used in the above computations. To do a sphere
simulation use the formulas given in subsection 9.1.2. Other surfaces
are discussed in the exercises.

Incidentally, DEMONTURN is really the more important of the two cor-
rections to REALWALK. A worthwhile first step is to write the program
without DEMONLEAP. Experiment with that geometry to see what it looks
like and how it differs from the fully corrected version.

In writing the program, beware of the following bugs:

Don't start your simulation precisely at r O without considering
what happens to your formulas.

The overall accuracy of the simulation suffers if you use large incre-
ments. (This is in contrast with the sphere simulation of chapter 7,
which suffers only in picture displayed if you choose large increments for
the steps in FORWARD.) You will probably have to choose SMALLDISTANCE
such that CENTRAL . ANGLE is a few degrees at most.

As given, the program gets much less accurate near the south pole of
the sphere. To fix this you may want to insert a step at the beginning
of the ioop in WEDGEFORWARD that selects SMALLDISTANCE according to
where the turtle is. (How about taking SMALLDISTANCE to be CONSTANT±
GAPRATIO, which ensures that LEAP does not get large as GAPRATIO does?)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Wedge Representations 355

Exercises for Section 9.1

Write down equations 1-4 of subsection 9.1.2 for the special case of
a sphere. [A[

Convert your answers to exercise i and the formula given in the text
for CENTRAL.ANGLE to measure angles in degrees rather than radians.
Recall that the sphere simulation in chapter 7 was arranged so that the
input to FORWARD was an angle in degrees. What value should you use
for R so that the input to the WEDGEFORWARD procedure will likewise be
an angle in degrees? [I-IA]

[P] What are TT(r), C(r), and equations 1-4 for a cone, expressed
in terms of the cone's "pie angle" O? Make a computer wedge map
program for a cone and explore its geometry. In particular, check that
away from the center the surface is fiat. How is this flatness reflected
in the equations? Circles, not necessarily around the center, make a
particularly interesting topic of study. [H]

For a cone with negative curvature, you should find that TT(r) is
greater than 2ir. What does this mean about demon turning? How
about leaping? Can we still interpret the map as consisting of wedges
with gaps in between? Does the program still work? [A]

The problem of computing the central angle corresponding to a given
Walk has a simple answer if the length of Walk is much smaller than
the distance from home. Project Walk onto a line perpendicular to the
position vector. That projection is very nearly an arc of length d on a
circle of radius r around home; hence the central angle is nearly d/r (in
radians). Use this method to verify the approximation given in 9.1.2.
Note that the unit vector S can be easily expressed in terms of the
unit radial vector U as S = Perp(U). U, in turn, is easy to express in
Cartesian coordinates. If (O, O) is the center, U = (x/r, y/r).

[P] Figure 9.4 shows the wedge map of a plane with a symmetric bump
in it. For developing a computer simulation you can use the following
formulas:

C(r) = 21r[r + BQ(r)]

(cos-1 ifr<irs
s -

if r).irs

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 9.6
Another wedge layout for the sphere.

{B.r
sin- ifr<irs

TURNING.PER.ANGLE= s s

O ifr>irs
Here rs is the size of the bump, and the number B determines its
steepness. B = s means that the bump has vertical sides (an equator) at
one point, B < s means a flatter bump (no equator), and B> s means
a bulbous bump (two equators). What are the corresponding formulas
for GAPRATIO and TT(r)? Verify that these formulas give the qualitative
features of the bump. Draw a map path of a straight turtle line that
starts on the flat part of the surface and goes over the bump (but not
directly over the center of the bump). Make a computer simulation and
check your guess.

'T. [P] Make a simulator of a terrain with several bumps. This is no longer
radially symmetric, but you can still use the implementation outlined in
9.1.3 if you divide the map into several regions, each containing a single,
symmetric bump. Use your simulator to invent a computer game, say,
based upon trying to shoot a target across the bumpy terrain. For this
purpose, demon leaping is probably not needed.

The wedge map for the plane with a bump differs from undistorted
flat maps, even in the regions away from the bump where the surface is
flat. Explain the nature of the distortion. [A]

[D] Our program is based upon specifying the surface using the two
fundamental parameters C(r) and TT(r). But in fact it is sufficient to
give only one of these. If you know calculus, show that TT(r) is equal
to dC/dr, the derivative of C(r). [HA]

[D] The sphere map in figure 9.6 illustrates a layout of the wedges
that is not radially symmetric. With infinitely thin wedges, this makes

Equator

South Pole

356 Curved Space and General Relativity

North Pole

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Wedge Representations 357

Figure 9.7
(a) Torus and latitude on it. (b) Corresponding wedge layout.

latitude circles on the surface correspond to lines y = constant on the
map. We can still use the basic simulation scheme of 9.1.2 and 9.1.3 if
we give new formulas for demon turning and GAPRATIO on this kind of
map. What are these formulas in terms of C and TT? In which direction
is the leap correction? [HA]

[P] Investigate the layout described in exercise 10 for a wedge map
of a sphere. This layout has the advantage that lines of latitude and
longitude are lines of constant y or constant x. Thus, it may be good
for simulating navigation problems. Show that the demon turning for
a short walk is (Ax/R) X sin(y/R) where y is the y coordinate on the
map and Ax is the change in z coordinate. Find GAPRATIO as well. Use
this information to make a simulation.

[P] Improve your simulation of exercise 11 so that it knows what to
do when the turtle walks off the edge of the map. Improve it again so
that is does not get much less accurate near the poles.

[PD] The kind of layout discussed in exercise 10 is particularly
convenient for making a wedge map of a torus. To figure out the
appropriate parameters we can return to the "cone method" analysis
we used to derive the parameters for a sphere in subsection 7.3.5. The
result of the cone method may be succinctly stated as follows: The total
turning in going around a circular track banked at O from fiat is 2ir cos O.
Consider a torus with latitudes labeled by angle LAT as shown in figure
9.Ta. Walking around such a latitude appears to a turtle to be just like

Lot itude

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

358 Curved Space and General Relativity

following a circular track banked at 90 - LAT. Hence, total turning
around it is

2ircos(90 - LAT) = 2irsin(LAT).

On a wedge map of the torus, as in figure 9.7b, those latitudes appear
on the map as straight lines; thus, the turtle's real turning is exactly
canceled by demon turning. So the demon turning over a complete
latitude is 27r sin(LAT). Write a program to simulate the wedged version
of a torus. If the map is rectangular, with width w and height h, show
that the demon turning along a straight turtle walk is

Ax . 2iry2ir sin -.
w h

What should one mean by an "equator" of the torus? How many
equators does a torus have? Prove using the wedge method of analysis
that a turtle line that repeatedly intersects an equator always intersects
it at the same angle. [Al

Do exercise 9 for the rectangular layout shown in figure 9.6. That is,
let W(y) be the total (real) width of the surface as a function of distance
up from the middle line, and show that TT along a line of constant y is
dW/dy.

[P] In traveling over a hill on a plane, a turtle must go farther
than in making the same trip if the hill were not there. In contrast,
make a simulation of a plane with a "hill" where the distance through
the "hill" is less than the planar distance. Such a surface cannot fit in
three-dimensional space.

[P] Make a simplified simulator with no leaping. Play with different
TT functions and correlate bending toward or away from the center,
circular "orbits," etc. with properties of the TT function.

When the edges of adjacent wedges are parallel there is no demon
turning. The world there is locally fiat and would fit into a planar map.
Conversely, if the edges are not parallel there is demon turning. The
sense of demon turning, toward or away from the center, is determined
by whether the edges get closer together or farther apart as you move
toward the center. Go back and analyze the umbrella of exercise 16 of
section 5.2 as a wedge map of a curved surface according to the above
considerations. Correlate positive and negative curvature, if possible, to
bending toward or away from the center.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Phenomena of Curved Space and Time 359

Figure 9.8
Rectangular grid viewed through spherical bent-space region.

9.2 Phenomena of Curved Space and Time

It is easy to feel smug about the turtle's interpretation of curvature as
mysterious gaps in the world occupied by a demon. As three-dimensional
creatures, we have a privileged exterior view of spherical geometry which
the turtle does not have. On the other hand, when it comes to visualizing
what curved space can mean, we find ourselves in a position more like
the turtle's. We are no longer able to step outside the world we live in
and "see" it as a curved part of a higher-dimensional world. (Luckily, we
have since chapter 5 put aside such extrinsic notions of curvature in favor
of a more general, intrinsic sense of what it means to be curved.) More
than that, our everyday experience is purely fiat, like the turtle's. Very
few people have ever questioned whether the geometry of the universe
could be other than fiat Euclidean. Fewer still have a coherent idea of
what it might be like were it not flat.

9.2.1 Curved Space

What would it be like to live in a curved world? Rather than dilute
the experience by talking about long walks in space, careful measuring,
and mapmaking, imagine that a piece of your living room (say, a sphere
about a foot in diameter) contains space that is curved. Your situation
would be analogous to that of a turtle faced with a hill in an otherwise
fiat plane, as depicted in figure 9.4.

The first thing you notice as you enter the room is that objects appear
distorted when viewed through the spherical region. Figure 9.8 shows

\.

\ II

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 9.9
(a) Wire "bends" when poked through region. (b) Sequence of views as wire is drawn
through region.

what a rectangular grid looks like. Next, you poke the region with a
piece of stiff wire. The wire goes effortlessly in and out, but appears to
bend as you push it in. The bend is more than a distorted image, since if
you poke the wire all the way through it comes out the other side at an
angle to its original direction (figure 9.9a). You try the same experiment
with a thin glass rod, which is too rigid to bend without breaking. But
the same thing happensthe rod comes out of the region at an angle
to its original direction. Passing rods and wires through the sphere a
few more times draws attention to another phenomenon: When they
are poked straight through the center of the sphere, they do not appear
bent at all but seem shorter than when they started. Figure 9.9b shows
a sequence of views as a wire is drawn through the sphere.

A bee makes a sudden appearance and flies at great speed on a beeline
towrd and into the region. None the worse for wear, it comes out the
other side at the same speed, but its trajectory is reaimed exactly as if
it had flown along your bent wire. Intrigued by this coincidence of bee
trajectory and wire bending, you shine a penlight beam along the wire
into the region. Sure enough, the beam emerges deflected exactly as the
wire was bent.

360 Curved Space and General Relativity

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Phenomena of Curved Space and Time 361

(a) (b)

Figure 9.10
(a) Board cracks apart as it is pushed into the region. (b) Gaps close after board is
removed.

Getting more aggressive, you take a thin but rather wide (wider than
the region) board and push it sideways towards the center of the region
as if trying to slice the region in half. In sharp contrast to the wire,
the board resists. Pushing harder and harder, you eventually succeed
in getting it in, but the board splits in several places (figure 9.lOa).
Withdrawing the board, you find that the gaps are gone but the splits
have not healed (figure 9.lOb).

As a final experiment, you fill a large aquarium with water and place
it below the region. Now you raise the aquarium until the region is
submerged. The water level drops!

Let's summarize the phenomena seen so far. They can be organized
into two camps: moves and turns.

Distance distortion Distances through the curved region differ from seem-
ingly parallel distances not through it. This accounts for the board
breaking. As figure 9.11 shows, a flat board embodies the constraint that
parallel segments have the same length. If the region of space (shaded)
requires extra distance to traverse it, there will not be enough board to
bridge the gap and the board must break. Containing more distance,
the region also contains more volume than you would expecthence the
water effect.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Figure 9.11
Two parallel segments of a fiat board must have the same length.

Bending Lines (wires, light rays, beelines) all bend globally, but there is
ample evidence that they are not experiencing any bending locally. This
should remind you not only of the demon turning in our turtle parable,
but also of the first time the turtle set foot on the sphere in chapter 5
and found that things can get turned without turning locally.

It is time for a bit more precision in investigating this curved-space
region. You decide to make a map, as the turtle did. So you coat a
rubber sheet with epoxy and hold it centered in the region. After the
epoxy dries you cut the sheet into wedges. The wedges fit together
perfectly until you remove them from the region. When you do that,
you perceive some stress and maybe a bit of buckling. But if the pieces
are small enough, they will survive and still nearly fit fiat in a plane.
The result is just the wedged "hill" map of figure 9.4. You could now
predict bending of wires and beelines from this map by just drawing
straight segments within each wedge and "demon leaping and turning"
when necessary to get to a new wedge. Of course, there would be some
error, since the individual wedges needed some distortion in order to fit
into a plane. But if you had the patience, you could make maps with
narrower and narrower wedges until the distortion in any single wedge
was negligibly small. This would yield a very accurate wedge map.

Notice that, even in fiat (three-dimensional) space, you could glue
together all the wedges without any gaps at all if you allowed the
resulting surface to bulge out of the plane to produce the hill of figure
9.4. Such a map would be a perfect map of a two-dimensional slice of the
region of curved space. But it suffers two defects. First, it is embedded
unsymmetrically in three-dimensional space, with a hill on one side and
a dent on the otherwhereas the slice it maps is actually a perfectly
symmetrical slice through the curved-space region. (This is another ex-

362 Curved Space and General Relativity

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Phenomena of Curved Space and Time 363

ample of the nonintrinsic characteristics a surface can pick up by being
embedded in a higher-dimensional space. Recall the "curvature" of a
cylinder, or the fact that edges of a cube look distinguished from but are
really intrinsically the same as points interior to faces.) More important,
there is no guarantee that a general wedge map can be glued together
in three-dimensional space. If, for example, the curved-space region had
less space than it appeared to have from outside, you should be able to
convince yourself that the wedge map could not be glued together at all
in flat three-dimensional space.

9.2.2 Curved Spacetime

Suppose you discover that your watch loses time whenever you put it
into your jewelry box. The watch is guaranteed accurate and you've had
it checked. If you leave the watch on the table just a few inches away
from the box it doesn't lose time. There simply is something about that
box. Repeating the curved-space experiments of the previous section
with the box shows nothing unusual. Wires poked into the box seem
perfectly normal, and the beam from your penlight doesn't bend. But
while experimenting with the light you notice one other peculiarity: Dust
particles are deflected as they fall past the box. Aside from that and the
time loss, everything seems normal.

Those deflected particles should make you suspicious. More than that,
your adventures with curved space might have already led you to think
of a way to describe the time-loss phenomenon. One could say that the
region in the box contains "less time" than nearby regions, just as the
curved region contained "more space." And perhaps this "less time"
accounts for the deflection of the dust particles in the same way that
the curved space bent the bee's path. But this is a very fuzzy theory.
The fact that dust-particle paths bend but light rays and wires don't is
particularly puzzling.

Let's explore the geometric possibilities. We can represent time as an
extra dimension in addition to the usual spatial ones. In terms of vectors,
adding dimensions is not much trouble. We just add a fourth coordinate,
t, to the triple z, y, and z. Thus, a point in spacetime specifies a
particular place at a particular time. To link with your experience, we'll
call such a thing an event to imply that a particular time characterizes
it as well as a particular place.

But this is too formal. Is there some way to see spacetime and get
some feeling for it? Think of a situation with motion in itsay, some
white billiard balls moving on a black billiards table. A snapshot from

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

X

Pigure 9.12
A billiards shot in spacetime with initial and final ball positions shown in the bottom
and top slices.

above gives a nice scale-model "map" of the balls' positions at an instant.
Now think of piling the negatives from a whole sequence of pictures,
one on top of another, into a thick pile. Through the clear celluloid you
see black lines representing the paths of the balls. Each slice shows the
positions of the balls at an instant. But in addition to positions, changes
in time are represented in this "map" as well, by moving up or down in
the pile. What we have is a spacetime map of the billiards table and balls.
Notice how this model has used the third dimension, otherwise unused
in this case, to represent time. We can use this technique, drawing
three-dimensional pictures, whenever the motion we are interested in is
restricted to two spatial dimensions.

The path of a particle in spacetime (that is, the collection of events
that gives the particle's position at different times) is called the world
line of the particle. For a ball at rest on the table, its image in sequential
negatives is directly over itself; the world line is vertical. If the ball is
moving, the image is slightly displaced from one negative to the next
and the world line will be tilted away from vertical. Figure 9.12 shows
a billiards shot down the middle of the table toward two stopped balls.
Upon striking, the ball stops but propels the two other balls into the
corners of the table. Figure 9.13 shows a circular "earth orbit," which
in a spacetime map becomes a helix winding its way around the vertical
world line that represents the stationary sun. Notice that a particle's
velocity is represented by its heading in spacetime. In particular, a

384 Curved Space and General Relativity

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Phenomena of Curved Space and Time 365

Figure 9.13
The earth orbiting the sun traces out a helix in spacetime.

heading parallel to the time axis means zero velocity. As the particle
picks up speed its heading tilts farther and farther away from the time
axis. The spatial component of the heading points out where in space
the particle will be after the passage of some timethat is, it gives the
direction of spatial motion.

Let's take a planar slice of our jewelry box and call it the x,y plane.
Piling up slices, we get a three-dimensional model of the region of
spacetime that contains all events, no matter when they occur, as long
as they occur in the chosen slice. For a moment let's specialize to one
spatial dimension, the x axis, that can represent the line along which
you insert and remove your watch. That way we can draw our spacetime
map in two dimensions.

Suppose that this region of spacetime is curved, and in particular that
there is "less time" at the center of the box (z = O). We can represent
this as a "wedged" two-dimensional spacetime with the wedges thinner
toward the center as in figure 9.14a. Figure 9.14b shows the world line
of a watch inserted in the box at t = O (bedtime) and removed at t =
9 hours (breakfast time). The watch has traversed less time (because

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

366 Curved Space and General Relativity

(a)

Wotch removed

(b)

t

Pn
Watch inserted

Out

t9

tO

Figure 9.14
(a) Wedge map of spacetime; "less time" near the center. (b) Watch inserted at t = O
and removed at t = 9 traverses less time than watch that remains outside the box.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Phenomena of Curved Space and Time 367

tr3

tr2

t-o

Figure 9.15
Particle starts at rest at t = O, deflects and picks up greater and greater velocity.
Spatial view (z axis) at various times shows the particle moving and accelerating.

of "demon leaps," if you like that terminology) than watches outside
the distorted region of spacetime, so it appears to be running slow even
though it has ticked off the locally appropriate amount of time. You
should recognize this time-interval distortion as the exact analog of
distance distortion in space alone.

How about those deflected dust particles? Take a look at figure 9.15a,
which shows the world line, for one spatial dimension, of a particle that
starts from rest. You can see how the "demon turning" from wedge to
wedge causes the world line of the particle to "bend." This is precisely
analogous to spatial bending, but to distinguish the two we will use the
term deflection to denote bending due to spacetime curvature.

Consider how an observer watching the spatial part of the world line
(the particle's path in space) will interpret deflection. First of all, the

t3

t:2

t:I

to

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

368 Curved Space and General Relativity

initially vertical heading will tilt and acquire a spatial projection, that
is, a nonzero velocity. The accumulated effect of the acquired velocity
will be motion along the z axis. As the heading tilts more and more, the
observer sees more and more velocity, that is, acceleration (figure 9.15b).
The natural interpretation of seeing an object at rest gradually pick up
velocity and move off in some direction is that some force is making it
do that. But now that we know about curvature, we can see that this
"force" is no more real than the turtle's demon. In three-dimensional
spacetime, this demon turning can change the direction of the spatial
projection of headingthat is, the direction of motionas well as the
speed.

9.2.3 The Four Curvature Effects

Let's summarize our position. We have investigated with two thought
experiments the observed phenomena associated with curved space and
curved spacetime. We can organize these into 'our major effects, cor-
responding to the "move" and "turn" parts of each kind of curvature:

Distance distortion Spatial lengths of seemingly parallel paths may differ.
This effect depends in no way on what kind of ruler you use.

Bending Curved space causes straight paths to appear to bend when
measured against "straight" as determined by other paths outside the
curved region. All objectswires, beelines, light rays, and so on-
exhibit exactly the same bending in curved space.

Time-interval distortion When viewed from outside a region of curved
spacetime, the "passage of time" within the region may proceed at a
different rate. All phenomena occurring within the region experience
the identical slowing down or speeding up.

Deflection To an observer situated in space (as opposed to one who
"sees" spacetime), the paths of moving particles appear to be deflected
by a region of curved spacetime. The quality of the deflection (changing
direction of motion, or merely speeding up or slowing down) may depend
on the particle's velocity, but all objects with the same initial position
and velocity experience the same deflection.

In these descriptions we have emphasized the universality of the effects
of a curved geometry. All clocks, regardless of construction, appear to

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Phenomena of Curved Space and Time 369

(a) (b)

Figure 9.16
(a) Spacetime wedge map showing a two-dimensional space with curvature in the
time dimension. (b) If the space itself is curved, each disk must be wedged.

slow down the same amount. All beelines, light rays, and wires bend
the same. Ail particles, regardless of composition, will follow the same
trajectory if set up with the same velocity (heading in spacetime). We
call this factthat paths or world lines can depend only on position
and headingthe principle of geometric indifference, to remind you that
these curvature effects are purely geometric in origin and thus indifferent
to the type of "ruler" used to measure the effects.

In conclusion, let us observe all these effects operating together in a
region of curved space and time. For definiteness, imagine a hill in a
flat plane (as in figure 9.4) that is also curved to contain "less time."
The resulting spacetime map, shown in figure 9.lGa, can be viewed
as a collection of disks piled up and centered along the t axis. The
disks are all thinner toward the middle, and far away from the curved
region they approach a uniform thickness. As a check, we can cut
these disks with any plane containing the t axis and obtain the previous
diagram for one spatial dimension (figure 9.14). Slicing one of these
disks perpendicular to the t axis should produce the spatial plane at
some fixed time. We know that that this "plane" is not flat but should
be viewed a collection of wedges as in figure 9.4. Thus, each disk must
really be a circular arrangement of peculiarly shaped three-dimensional
pie wedges, as shown in figure 9.1Gb.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

370 Curved Space and General Relativity

An observer probing the region would see all four of the curvature
effects. Rulers and clocks would sense distance and time-interval distor-
tion. An object initially at rest would cross only spacetime gaps, not
purely spatial ones, and hence would sense only spacetime deflection. A
stiff wire held firmly could resist spacetime deflection (the tendency to
acquire velocity), but would be powerless to resist bending due to spatial
curvature. A beeline would be both bent and deflected.

Exercises for Section 9.2

What does the "speed" at which a turtle treks out a spacetime path
mean? Remember that the change in position per change in time (real
speed) is shown as heading on the diagram. [A]

The world line of a particle has heading vector H = (Hi, H) at
some point. What is the particle's speed? What is the velocity vector
(vt, v) of the particle's motion in space? [AI

[P] Consider the optical properties of a region of curved space; for
example, verify that bending of light rays will cause a grid to appear as
in figure 9.8. If you build a "hill" simulation (exercise 6, section 9.1),
look for true lenslike behavior. In particular, if the hill is not too steep
and you consider only rays passing near the center, can you find anything
like a focal point? (A focal point is where parallel rays going into a lens
converge.)

How will a soap bubble behave upon approaching and entering a
region of curved space? Will it be attracted or repelled? [A]

[D] An effect almost like that associated with curved space can be
achieved if objects are heated or cooled unevenly. Pouring a hot liquid
into a glass heats the inside faster, makes it expand, and violates the
constraints in the solid structure of the glass, causing it to break. This
is much like the case of our board in curved space. Compare the effects
of heating and cooling with the effects of curved space. Here are some
questions to consider: Suppose objects instantly took on the temperature
of the surrounding region of space. Is there some spatial distribution of
temperature that would mimic our curved-space hill? If so, how could
you distinguish it from curved space? Notice that an object will not
break if it is heated uniformly (at least if the object is made of uniformly
expanding material). How is this reflected in the curved-space analogy?
[A]

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Phenomena of Curved Space and Time 371

Away from Center

Figure 9.17
Two planes with a handle between and a wedge.

[PD] Imagine that you fill a cubical mold centered on a curved-space
region such as described in subsection 9.2.1 with plaster of Paris and let
it harden. Now cut it apart into six pyramids whose bases are the cube's
faces and whose peaks meet at the center of the cube. Withdraw the
pieces from the region (assuming that there is enough flexibility to do
this without breaking) and describe their shape. You can make a more
accurate wedge map if you use a dodecahedron or icosahedron rather
than a cube. Can you embody this technique in a computer program
that is the three-dimensional analog of the one in section 9.1?

Describe the problems of pushing a board broadside into a curved-
space region. [A]

[P} Figure 9.17a shows a surface that looks like two planes hooked
together by a handle. Figure 9.17b gives the shape of the wedge in a
wedge map for such a surface. Can you describe the phenomenology
of a spherically symmetric three-dimensional space that has this as a

Toward Center

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

372 Curved Space and General Relativity

cross section (just as the hill was the cross section of the curved-space
region in subsection 9.2.1)? Answer as we did in 9.2.1 in terms of wires,
beelines, etc. [H]

9. An apple is hanging in a tree. What is the heading of its world
line? Suppose you throw an apple in a (parabolic) trajectory due north.
What is the heading now? Draw spacetime diagrams showing the apple's
heading and world line in both cases. Suppose you make a continUous
stream of water arch just like the apple's trajectory. Draw a three-
dimensional spacetime diagram of the stream, and indicate the headings
of a few sample drops of water. [H]

9.3 The General Theory of Relativity

We have described the phenomena associated with curved space and
time purely as a mathematical fantasy. But Einstein's General Theory
of Relativity says that the universe really is curved in this way. In
fact, the theory asserts that the spacetime around a mass is curved ap-
proximately as depicted in figure 9.16. Small objects (like people) make
very small distortions, which are hardly noticed, but massive objects like
the sun make distortions spreading across millions of miles, "bending"
the straight paths of objects. One can only marvel at Einstein's insight
in putting forth this theory, for he did not conjecture that spacetime
is curved on the basis of observations of all the curvature phenomena,
as we imagined doing in the previous section; rather, he guessed on the
basis of facts known since Newton, together with some general theoreti-
cal considerations, that spacetime should be curved. Moreover, he de-
veloped equations that predict the nature of the curvature from certain
facts about the universe, in particular the distribution of mass in it.

These predictions have been experimentally confirmed in the case of a
large enough mass, such as the sun. For example, during a solar eclipse,
one can see stars that we know to be actually behind the sun. This can
be interpreted as a consequence of the curvature of spacethe spatial
bending of the light rays from the stars, as in figure 9.18. Even with
a mass the size of the sun, however, the light is deflected only a tiny
fraction of a degree. Time-interval distortion is also observable. Looking
at light from the sun, scientists have found that spectra emitted by
atoms in the sun are shifted "towards the red" everything is of slightly
lower frequency than in spectra of atoms of the same chemical elements
on earth or in free space. This indicates an apparent slowing down of
atoms (which are very accurate clocks) in the vicinity of the sun.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

The General Theory of Relativity 373

Starlight

4
Astronomer Star

Figure 9.18
Bending of starlight.

9.3.1 Gravity as Curvature

It requires precise measurement to observe the spatial-bending and time-
interval-distortion effects of curved spacetime, even in the case of a
huge mass like the sun. And scientists have oniy recently been able
to measure the long distances across the region of space occupied by
the sun accurately enough to verify distance distortion. But there is
nothing at all subtle about the fourth of the curvature effects predicted
by General Relativity. Perhaps you have guessed already: Deflection,
the mysterious "force" that deflects the paths of objects moving through
curved spacetime, is readily observable as the familiar "force" of gravity.
Gravity is thus not a real force at all; it is the "demon turning" associated
with locally straight motion through curved spacetime!

The hypothesis that gravity is a purely geometric phenomenon leads to
strong predictions. The principle of geometric indifference implies that
any particle should follow the same trajectory under gravity's influence,
as long as it starts at the same place with the same velocity (spacetime
heading). Galileo is said to have dropped two different weights and found
that they fell identically. Over the past 20 years careful experiments
have validated this to high accuracy with objects of widely differing
makeup. Another strong prediction is that gravitational "acceleration,"
for example, falling towards a planet, is really no acceleration at all but
rather locally straight motion in spacetime. Thus, particles deflected
or falling because of gravity should not feel any force. Astronauts in
orbit do not experience any force; they are weightless. Finally, the
hypothesis predicts a correlation between two seemingly disparate effects,
the red shift and gravitational force. One could in principle measure
relative thickness of wedges from red-shift data, and, from the shape of
the wedges thus determined, compute the demon turning (the force of
gravity). Insofar as this experiment can be performed, it has validated
the correlation.

9.3.2 Rotating World Lines

Identifying gravity as the deflection due to curved spacetime is a powerful
and beautiful idea. But there is a serious bug in the theory as we have

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

374 Curved Space and General Relativity

explained it so far. Take another look at figure 9.15, which shows the
deflection corresponding to a region of "less time." Indeed, the path of
a moving particle is deflectedbut it is deflected away from the curved
region rather than towards it. The theory as presented so far would
predict that gravity repels rather than attracts!

The bug in our theory is a profound one. The root of the problem lies
in our representation of spacetime as simply space with an extra time
dimension. Let's take a more careful look. For simplicity, we'll look at
two-dimensional spacetime (that is, motion along one spatial dimension),
and we'll suppose that everything is flat so there are no wedges to worry
about. Figure 9.19a shows such a diagram. The straight lines represent
the world lines of particles moving at constant velocity. The different
slopes of the lines represent different velocities.

We've already said that the vertical t axis represents zero velocity-
moving through time without changing position in space. If you like,
you can regard the horizontal x axis as "infinite velocity" changing
spatial position without moving through time. Beyond that, spacetime
diagrams are usually "calibrated" by stipulating that an angle of 450
corresponds to the speed of light. Directions above the 45° line are
usually referred to as timelike directions because they lie close to the
time axis. Directions below the 45° line are referred to as spacelike
directions.

So far, things are perfectly straightforward. Our spacetime diagram
seems no different from a normal Euclidean plane with some straight
lines drawn on it. But now comes a crucial difference, and that difference
has to do with rotations. Is there some meaningful geometric "rotation"
operation one can perform on a spacetime diagram that is consistent
with the interpretation of the diagram as depicting world lines in space
and time, and is consistent with what one actually observes when looking
at motion in the real universe?

Einstein discovered that there is indeed such an operation. But the
operation is not the usual kind of rotation shown in figure 9.19b. Rather,
it is the geometric operation shown in figure 9.19c. This operation is
called a Lorentz rotation. As the figure shows, a Lorentz rotation, in
contrast to a normal rotation, has the following properties: Timelike
directions move in the opposite direction from spacelike ones, and lines
at a 45° angle do not move at all.

In the following section we'll discuss the physical meaning of Lorentz
rotations and why this is the "correct" rotation operation for spacetime
diagrams. For now, let's just verify that the interpretation of gravity as
the deflection due to spacetime curvature really does produce an attrac-

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

The General Theory of Relativity 375

Space like

I 2

Figure 9.19
(a) World linee of constant velocity; line 3 represente the speed of light. (b) Regular
rotations. (c) Lorentz rotations.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

376 Curved Space and General Relativity

Heoding

____________- _dge Direction

Figure 9.20
Lorentz rotation causes heading to turn opposite to edge rotation.

tive force so long as we assume that the "demon turning" from one
time-slice wedge to the next goes by the Lorentz rotation rule. Figure
9.20 shows once more a particle in a region of curved spacetime that
is about to be "demon turned" while moving from one wedge to the
next at the point marked A. Notice that the edge of the wedge lies in a
spacelike direction and the particle's heading lies in a timelike direction
so long as we assume that the particle is moving at less than the speed
of light (see exercise T). According to the Lorentz rule, the particle's
heading and the edge of the wedge will move in opposite directions in
going from one wedge to the next. Figure 9.20 at B shows the edge must
rotate clockwise and the heading must therefore rotate counterclockwise
across the gap. The resulting velocity deflection will be toward the mass
rather than away from it. The same thing happens from C to D.

When we implement a General Relativity simulator later in this chap-
ter, we will need to be able to compute Lorentz rotations. Since the
"demon turning" in our simulation occurs only in small increments, it
will be sufficient to have a formula that tells how to Lorentz-rotate
through a small angle. For comparison, let's look at the analogous for-
mula for ordinary rotations. If we knew nothing about sines and cosines,
we could not make use of the rotation formula of chapter 3 to find how
to rotate vectors. But if we're only interested in rotating a vector y
through small angles, we can make do (exercise 4 below) by adding to y
a small vector perpendicular to y (that is, tangent to the circle in which
y moves under the rotation):

Rotate(v, A) y + A X Perp(v).

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

The General Theory of Relativity 377

The formula is quite accurate if the rotation angle A is small (and
measured in radians). Recall that the Perp operation is given in coor
dinates by

Perp(x, y) = (y, x).

The corresponding formula for Lorentz rotations is the same, except we
use a different Perp operation:

LRotate(v, A) y + A X LPerp(v)

where LPerp (the "Lorentz perpendicular") is defined by

LPerp(x, t) = (t, x).

Verify that this rotation satisfies the two qualitative properties of Lorentz
rotations described (exercise 5).

9.3.3 Understanding Lorentz Rotations

We debugged the curvature interpretation of gravity by pulling out of a
hat the assertion that spacetime rotations follow the Lorentz rule, but
we gave no indication as to why this should be so. In fact, we never even
said what rotating a spacetime diagram should mean. One way to think
about a rotation is that it is a way of associating to each line through
the origin a new line through the originit is a correspondence between
headings and headings. In a spacetime diagram the headings indicate
velocities of particles moving in space. So the rotation of a spacetime
diagram can be viewed as an operation that takes a velocity as input
and outputs a new velocity.

The theory of relativity hypothesizes a natural physical interpretation
for this operation on velocities: Rotating a world line corresponds to
looking at that same world line from a new frame of reference. Of
course, normal rotations can be looked at in this way as well, but there
is one crucial difference. The change in frame of reference must be one
that changes velocities. Thus, Lorentz rotation is like hopping a freight
train and seeing the letters on the side of a boxcar, initially a blur of
speed, become stationary and readable, rather than like turning your
head to see the world from a rotated perspective.

Returning to spacetime diagrams, suppose we have a particle whose
world line depicts motion at some constant velocity. Now we apply
a Lorentz rotation that makes the particle's world line appear vertical
(that is, makes it represent zero velocity). Relativity interprets this zero-
velocity rotated world line as the same motion of the same particle, only

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

318 Curved Space and General Relativity

this time as seen from the viewpoint of an observer who is moving at
the same velocity as the particle.

If we accept this interpretation, questions about how rotations should
behave are transformed into experimentally decidable questions about
motion in the real world. Suppose we make a rotation that transforms
to vertical a world line representing constant velocity y. We would like
to know how this same rotation should transform some other world
line, say, one representing constant velckity w. The corresponding ex-
perimental question is this: Suppose we observe two particles, one with
velocity y and one with velocity w. Now we shift to a frame of refer-
ence that is moving along with the first particle. How fast is the second
particle moving as observed from the new frame of reference?

You may think that the answer is obvious: An observer moving along
with the first particle should see the second particle moving with velocity
wv. But that is not what happens. In fact, at the core of the theory of
relativity lies the following fundamental and extremely counterintuitive
postulate: The speed of light will be observed to be the same in any
frame of reference. This implies, for example, that if you measure the
speed of a light ray emitted from earth while you are riding in a rocket
moving away from the earth at high speed, then you will obtain the same
answer as if you had made the measurement while you were standing
on the earth. And this should be the case even if the rocket, as seen
from earth, is itself moving at 99 percent of the speed of light! That is
certainly not obvious, nor even intuitively plausible. And yet as far as
anyone has been able to measure, it is true.

In terms of rotating spacetime diagrams, this invariance of the speed of
light means that any Lorentz rotation should leave 45° lines unchanged,
since these correspond to the speed of light. From a physical point of
view, this is the most salient feature of Lorentz rotations. Spacelike and
timelike directions pivot in opposite directions like the two ends of a
teeter-totter balanced on the fixed hinge, the speed of light.

The theory of Lorentz rotations and spacetime diagrams is called the
Special Theory of Relativity, and we have hardly been able to hint at
the scope of this theory here. We hope we have at least suggested that
there are experimental grounds for believing that the Lorentz rule gives
the "correct" way of rotating spacetime diagrams.

Exercises for Section 9.3

1. The convention that the speed of light is 45° on spacetime diagrams
is almost universally held, since it gives space and time equal billing.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

The General Theory of Relativity 379

This calibrates these diagrams in a peculiar way. Show that if you use
a unit of one second on the time axis, an equal spatial distance must be
186, 000 miles. What heading (angle from vertical) represents loo miles
per hour on such a diagram? [A]

John and Sam are identical twins. John goes to live at the center of
the sun for a while, then returns to Sam on the earth. Who is now older
and by how much? (Answer in terms of the thickness of wedge strips.)
Can one "time travel" this way? [A]

Spatial curvature, even around the massive sun, is so small that it is
hard to measure in terms of either distance or bending. On the other
hand, of the two effects of spacetime curvature, onegravitational red
shifttakes careful instrumentation to observe, while the otherthe
"falling" influence of gravityis obvious. Why are these two effects of
such apparently different magnitudes? [HA]

[P] In subsection 9.3.2 we gave approximate formulas for small rota-
tions, both the normal and the Lorentz kind. One can perform large
rotations by repeating these small rotations over and over. Write pro-
grams to carry this out. Plot the trajectories of the tips of spacelike
and timelike vectors as they are Lorentz-rotated. For the usual kind of
rotation, compare your results to the exact answer as computed by the
rotation formula of chapter 3. How small an angle must you take for the
small rotations if you want the large rotation to be accurate to within
10 percent? To within 0.1 percent?

Verify that the formula for small Lorentz rotations does indeed leave
45° lines invariant, and causes spacelike lines to move in the opposite
direction from timelike ones. [A]

Show that no sequence of small Lorentz rotations can change a
timelike direction to a spacelike one. This can be interpreted as follows:
If you see a particle moving at less than the speed of light, then you
cannot shift to a frame of reference (for example, by moving faster and
faster in the opposite direction) from which you will observe the particle
to be traveling at light speed or greater. [A]

A particle that moves faster than the speed of light is called a
tachyon. According to exercise 6, you caunot speed up a normal particle
to produce a tachyon, so tachyons, if they exist, must have been created
as such. (No one knows whether or not tachyons exist.) In analogy to
exercise 6, show that if you do have a tachyon you cannot slow it down

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

380 Curved Space and General Relativity

to below light speed by shifting to a new reference frame. Predict how
tachyons behave in a gravitational field. [A]

Imagine three turtles going straight off in different directions on a
sphere. When they meet, each accuses the other two of having turned
while out of sight. And what's more, two turtles who agree that the third
has secretly turned cannot agree on how much it has turned by. How,
then, can we ever settle on a definite number (total "demon turning")
for the bending of starlight? [HA]

We know that gravity can make things travel in (almost) closed orbits,
as planets travel around the sun. It turns out that velocity deflection
is crucial to this effect; spatial bending alone could not make a "turtle
line" become a closed orbit. What geometric property of the spatial
curvature due to gravity ensures that this is true? [A]

In chapter 5 we settled on a definition of "straight line" as an equal-
strided turtle walk. Can you give an analogous definition of "straight
line" in three dimensions? Show that a "straight" wire will always lie
along such a line. Can you give any justification for expecting a light
ray to follow such a path? [A]

In subsection 9.2.2 we imagined observing time distortion by putting
a watch in a box and later removing it. Alternatively, we could have
observed the watch ticking while it was in the box, or listened to the
ticks. More generally, we could have arranged for the watch to send
us some kind of "tick messages" to indicate how fast time was passing
in the box. Show on a spacetime diagram that tick messages received
from a clock in a region of curved spacetime will reveal the same slowing
down as would be observed by inserting a watch and later removing it
to check its time. Show that this fact is independent of the message
mechanism. This justifies our claim that red-shift data from the sun
measure wedge thickness. [HA]

[D] We said in 9.3.3 that we could reduce the question of how world
lines should rotate to experimental questions by seeing how the velocity
of a particle changes when the observer shifts frame of reference. On
the other hand, we can't observe anything moving faster than the speed
of light, so we can't find out how spacelike world lines are rotated by
measuring velocities of particles traveling at these speeds. Describe an
experiment that will give information about how spacelike headings are
rotated. [HA]

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

A Simulator for General Relativity 381

[D] It turns out that half the bending of starlight is due to spatial
bending and half is due to spacetime deflection. But we said that Lorentz
rotations leave 45° (speed of light) lines invariant. How is it, then,
that velocity deflection can contribute anything at all to the bending
of starlight? [HA]

You may need to recalibrate your intuitions a bit in order to really
think of gravity as geometry. In particular, answer the following ques-
tion: If gravity is not a force, why do you have to push up on everything
(like an apple in your hand) to counteract gravity and keep the apple
from falling? [HA]

9.4 A Simulator for General Relativity

It is not too difficult to embody the previous discussion in a program that
allows you to observe the paths of particles moving in curved spacetime.
If the spatial part of the motion lies in a plane, then we can display the
spatial motion on the screen and keep track separately of a "clock" that
gives the time coordinate. (If you get more ambitious you might consider
implementing a program showing the three-dimensional world lines in
perspective.) The program is essentially the same as the curved-surface
simulation of subsection 9.1.3, with an extra dimension added. Curved
spacetime is represented as in figure 9.16: a stack of disks, each made up
of wedges. The curvature is determined by four fundamental parameters,
which play the role of C(r) and TT(r), or equivalently GAPRATIO and
TURNING. PER. ANGLE from the simulation in section 9.1:

TIME.GAPRATIO, the ratio of gap between disks, to disk thickness en-
countered in moving in the time direction,

TURNING.PER.TIME, the corresponding amount that a world line must
be Lorentz-rotated per unit change in time (t coordinate) on the map,

SPACE. GAPRATIO, the ratio of gap to disk distance encountered in moving
in a spatial circle within one disk, and

TURNING . PER . ANGLE, the corresponding (spatial) demon turning per central
angle.

There is one way in which our program is simpler than the one in
9.1.1: We don't care how long a world line is, and we don't have to

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

382 Curved Space and General Relativity

worry about stopping the simulation after a certain distance. (Time
marches on.) So we needn't take H to be of unit length. We might
as well just take it to be an appropriately small increment to position
(the equivalent of SMALLDISTANCE X H). In addition, we'll simplify the
program by not including provisions for turning other than that caused
by curvature. You can add these features if you wish, but what we give
here will be sufficient to allow you to observe trajectories of any particle
moving solely under the influence of gravity.

9.4.1 The Coordinate Systems

Two things make the relativity simulation more complex than the one for
curved surfaces. First, we must keep track of two kinds of demon turning
and leaping, those associated with spatial rotations (bending) and those
associated with Lorentz rotations (deflection). This is not much of a
problem, since we can do each part of the correction separately. The
second problem is that we must now rotate the turtle's heading as a
vector in three dimensions rather than two. We have rotated vectors in
three dimensions before, but only vectors perpendicular to the axis of
rotation. The heading vector will not in general satisfy this property for
the rotations we need to accomplish.

This problem can be overcome by taking advantage of an old friend
from chapter 3, the linearity principle. Decompose the vector we want
to rotate into its component along the axis of the rotation plus what
is left over (which lies in the plane perpendicular to the axis). Since
rotating (even Lorentz-rotating) is a linear operation, we can rotate
these two components separately and then add them to get the result.
Rotating the parts separately is easy; the component along the axis
doesn't change, and the rotation of the leftover part is a rotation in
a plane, which we know how to do already. The decomposition and
subsequent rotation will be simple if we choose a coordinate system that
has an axis coinciding with the axis of rotation.

Let's implement this plan for the rotations needed in the simulation.
For spatial rotations the axis is parallel to the time axis, and the x, y
plane is where the action is. Spacetime rotations take place within the
plane that includes the turtle and the t axis (the sun). So both kinds of
rotations can be easily accomplished if we express the heading vector in
the so-called r, s, t coordinate system, which is specified by components
in the time direction t, in the spatial direction r directly away from the
sun (the radial direction), and in the direction s, which is perpendicular
to the above two (figure 9.21). These coordinates allow us to take ad-

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

A Simulator for General Relativity 383

Figure 9.21
The r, s, t coordinate system. Spatial rotations rotate around the t axis, Lorentz
rotations around the s axis.

vantage of the fact that the spatial rotations occur purely in the spatial
plane (the plane containing r and s), while the spacetime rotations occur
purely in the radial plane (the plane containing r and t). (Note that the
spatial plane is always parallel to the x, y plane of the r, y, t coordinate
system.)

Although the r, s, t coordinate system is good for doing the rotations,
it changes each time the turtle changes position. So we shall keep
position and heading in x, y,t coordinates, converting the heading to
r, s, t coordinates when we need to rotate. Fortunately, the relation
between the heading expressed in x, y,t coordinates (I-i', H7» H) and
the heading expressed in r, s, t coordinates (Hr, H, H) is simple:

H is the same in both sets of coordinates,

Hr (H,H)U,
H3 =(H,H).S
where U is the unit vector in the spatial plane which points from the
sun to the turtle's position, expressed in x, y coordinates. U is the same

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

384 Curved Space and General Relativity

as the basis vector r above, but we use the notation from our sphere
simulation to avoid confusion with r, the distance from the sun. As
mentioned in exercise 5 of section 9.1, U is the vector (x/r, y, r), and
S = Perp(U).

The reverse transformation, from r, s, t coordinates to x, y, t coor-
dinates, is obtained by writing for the spatial part of the vector

(H1, H) = HU + HS

with U given, as above, in x,y coordinates. The t coordinates are the
same in both systems.

9.4.2 Turning and Leaping

Once we have the heading vector expressed in r, s, t coordinates, it is
easy to implement the demon turning as a rotation in the spatial plane
followed by a Lorentz rotation in the radial plane. The amount of
the first rotation is determined by the amount of rotation between the
wedges of a spatial diskit is equal to some factor (TURNING . PER. ANGLE)

times the central angle traversed in the spatial plane. The amount of
the second rotation is determined by the amount of rotation between
the disksit is equal to some other factor (TURNING,PER.TIME) times
the change in the time coordinate.

The leap correction also comes in two parts, one across the gap from
disk to disk (in the time direction) and one across the gaps within the
disks (in the S direction). The equations are essentially identical to
equation i of 9.1.2, except that projection in the appropriate direction
is trivial to compute in r, s, t coordinates:

Spaceleap - SPACE.GAPRATIO X (0,113,0),

Timeleap - TIME. GAPRATIO X (0, 0, He).

Note that these leap vectors must be converted from r, s, t coordinates
to x, y, t coordinates before being added to the position.

9.4.3 The Program

The final program is much like the one given in 9.1.3. To start the
program choose initial values for the turtle's position P = (Pi, P, Pt)
and heading H = (H1, H, H) given as vectors in x, y, t coordinates.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

A Simulator for General Relativity 385

TO CURVED.SPACE.WALK

REPEAT FOREVER

REAL WALK

COMPUTE . PARAMETERS

DEMONLEAP

DEMONTURN

DISPLAY

REALWALK simply modifies the position according to H:

TO REALWALK

[PX PY PT] 4- [PX PY PT] + [HX HY HT]

The COMPUTE . PARAMETERS procedure computes quantities used in trans-
forming between x, y, z and r, s, t coordinates. These must be recom-
puted each time the turtle's position changes. The procedure also com-
putes the heading in r, s, t coordinates.

TO COMPUTE. PARAMETERS

R 4- SQRT(PXI2 + PY2)

U 4- (1/R) * [PX PY]

S 4- (1/R) * IPY -Px]

[HR HS HT] 4- CONVERT.TO.RST([HX HY HT])

DEMONLEAP computes the leap correction as given in 9.4.2 and modifies
the position accordingly, computing the total Walk vector as well:

TO DEMONLEAP

SPACELEAP SPACE.GAPRATIO [o HS O]

TIMELEAP 4- TIME.GAPRATIO * [O O HT]

LEAP 4- TIMELEAP + SPACELEAP

[WALKR WALKS WALKT] 4- LEAP + [HR HS HT]

[Px PY PT] 4- [PX PY PT] + CONVERT.TO.XYT (LEAP)

DEMONTURN modifies the heading as discussed in 9.4.2 and recomputes
the z, y, z heading vector:

TO DEMONTURN

CENTRAL.ANGLE 4- (1fR) * WALKS

SPATIAL.TURNING 4- CENTRAL.ANGLE * TURNING.PER.ANGLE

[1-IR HS HT] 4- ROTATE([HR HS HT], SPATIAL.TURNING)

SPACE.TIME.TURNING WALKT * TURNING.PER.TIME

[HR HS HT] 4- LORENTZ.ROTATE ([HR HS HT], SPACE.TIME.TURNING)

[HX HY HT] CONVERT.TO.XYT([HR HS HT])

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

386 Curved Space and General Relativity

Finally, the display of position and time can be handled by

TO DISPLAY

MOVE. TO [PX PY]

PRINT PT

The programs for converting between the two coordinate systems imple-
ment the formulas given in 9.4.1:

TO CONVERT.TO.RST [VX VI VT]

VR - DOT ([VX VY], U)

VS - DOT ([VX VI], S)

RETURN [VR VS VT]

TO CONVERT.TO.XYT [VR VS VT)

[Vx VI] i- VR*U + VS*S

RETURN EVX VY VT]

The next procedure is used by DEMONTURN to rotate a vector in the
r, s spatial plane. Rather than using sines and cosines, we use the
approximation for small angles given in 9.3.2:

TO ROTATE (V, A)

RETURN V + A * SPERP (V)

The appropriate perpendicular to use here is really the spatial perpen-
dicular of the spatial part of the vector. (The spatial part is the oniy
part that participates in the rotation; the time component is invariant.)
This perpendicular contains nonzero components only in the plane of
the rotation.

TO SPERP [VR VS VT]

RETURN [VS -VR O]

A similar pair of procedures accomplishes the Lorentz rotation:

TO LORENTZ.ROTATE (V, A)

RETURN V + A * LPERP (V)

TO LPERP [VR VS VT]

RETURN [VT O VR]

9.4.4 Help with Units

For experimentation you may select the four fundamental functions that
determine the shape of this curved universe. The following values cor-

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

A Simulator for General Relativity 387

respond quite closely to the spacetime curvature around a mass, as
predicted by Einstein. For TIME . GAPRATID you can use mir. Here r
is, as always, the spatial distance to center, and m is determined by the
mass of the attracting center (see exercise 4). This only approximates
the actual value of TIME.GAPRATIO, but it is quite good if m is small
compared with r (say, r > 50m) (see exercise 12). A corresponding ap-
proximation for TURNING PER. TIME is m/r2. Notice that this is precisely
the Newtonian formula for gravitational acceleration. A realistic func-
tion for SPACE.GAPRATIO is hard to write down in simple form, but
m(ln r)/r is a good approximation as long as it is small. The correspond-
ing TURNING.PER.ANGLE is m/r. (The symbol mr donates the natural
logarithm of r.)

You may wish to start out with simpler functions than these, or to ex-
periment with different functions for comparison. Another simplification,
which will not do much harm to the simulation, is to use these func-
tions but leave out leaping. This obviates the TIME.GAPRATIO and
SPACE. GAPRATIO functions, so you won't have to compute logarithms.

To start your simulation you need to know ballpark figures for m, r,
and y (the particle's velocity). To do this you may proceed as follows.
Settle on a number, e, for the speed of light. If v/c is small and the
spatial orbit is nearly circular, the radius of the orbit is determined by
m = (v/c)2r (see exercise 2). If you take r 100, y 100, and e
10, 000, then m =. th is a reasonable value.

To relate distances and times to what you see on the screen, remember
that a 45° world line represents the speed of light. So if e is 10, 000
turtle units per second, then the units for the time axis are 1/10, 000
second. With this unit of time on the t axis, a spacetime heading of
(vi, v, e) represents a velocity of y = /v2 + v2. Finally, remember
that heading is added to position in each step of the simulation. Hence,
using a heading vector (vi, v, c) makes each simulation step correspond
to one second of elapsed time. If you want one-minute simulation steps,
the appropriate heading vector to use is (80v, 60v, 60c), which is a
vector in the same direction.

Exercises for Section 9.4

1. Error in the approximations and computer roundoff error may ac-
cumulate in the length of the spacetime heading. Introduce in your
simulation a step to make sure the time increment (time component of
heading) stays constant. Make sure any correction you make doesn't
change velocity. [A]

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

388 Curved Space and General Relativity

[D] If an orbit is to be circular, then the rotation of the spatial part of
the heading must be the same as the CENTRAL . ANGLE in order to ensure
that velocity will always be perpendicular to the radius. When v/c is
small, show that this means m = (v/c)2r. [HA]

[P] Do elliptical orbits in your simulator close exactly, or do they
precess? (Precession means the ellipse as a whole rotates slowly.) Can
you do the simulation accurately enough so that you are sure any preces-
sion you might see is not error in the simulation? Assume for this purpose
that the formulas for demon turning and GAPRATIO are exact. [H]

[P] Convert your simulator to use physical unitsfor example, dis-
tance in meters, mass in kilograms, time in seconds. In this case m
is given by GM/c2 where G = 6.7 X 10_11 is the universal gravita-
tional constant and M is the gravitating mass. The speed of light, c, is
300, 000, 000 meters per second. You will need to scale your vectors to fit
the screen. Use the sun as a test case and see if your simulator gets the
right period for planetary orbits. (The mass of the sun is M = 2 X iO3°
kg.) How about using the earth as the central mass: Do earth satellites
exhibit the right velocities and periods for circular orbits? (The mass of
the earth is 6 X 1024 kg and its radius is 6.4 X 106 meters.)

[P] Experiment with the bending of starlight, y = c. For a real light
ray just grazing the surface of the sun, the actual bending is only about
1.75 seconds of arc (5 X iO degrees). Try setting this up on your
simulator, using the units given in exercise 4. (The radius of the sun is
7 X 108 meters.) Do you think you have any hope of observing such a
small effect on the simulator? How much must you increase the mass of
the sun before the effect is easily observable?

[P] Implement the simulation both with and without demon leaping.
How much difference does it make to your simulation, for example, with
closed orbits?

Verify the formulas for the leap corrections given in subsection 9.4.2.
[H]

[D] The time coordinate printed by the program allows us to compute
time intervals in the simulation. These time intervals correspond to
intervals measured by which clocka clock on the moving planet? a
clock on the sun? some other clock? [A]

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

A Simulator for General Relativity 389

9. [D] The so-called Lorentz length of a vector y is given by

/Vt2 - v2 - v.
Loreutz length is unchanged by Lorentz rotations, just as normal length
is unchanged by normal rotations. The Lorentz length of a piece of
world line y has an important interpretation: It is the time as ex-
perienced by the particle in making that little walk along y. Add a
part to your simulator that accumulates this timethat is, accumulates- HX2 - HY2and compares it with the coordinate elapsed
time. Can you reason qualitatively to predict the difference between the
two times in an orbit? How does the difference in times change from one
orbit to another? Under what circumstances is the difference large? [A]

[D] Make a very rough estimate of the amount of acceleration
(velocity acquired per second) due to deflection if a spacetime region in a
jewelry box 8 inches across causes a 50 percent time distortion and really
is curved as indicated in figure 9.15. Compare this with gravity (32 feet
per second per second). Using the "Einstein" formulas that correlate
mass with curvature, given at the end of section 9.4, compute very
roughly the mass needed to provide this curvature. See the physical-unit
discussion in exercise 4 above. [A]

[D] A gyroscope makes a good pointer for computing demon turning
in curved space. How many revolutions of the earth will a gyroscope
in a satellite need to show a demon turning of 10? (Use the "Einstein"
formulas at the end of 9.4 and the physical-unit correlation from exercise
4.) [HA]

[P] As we said in 9.4.4, our approximations to the actual curvature
break down when one gets very close to very massive objects. In reality,
if the object is massive enough and close enough, nothing can escape
from its gravitational attraction, not even light rays. This phenomenon
is called a black hole. Push your General Relativity simulator to its
extreme near the center. Does it exhibit any black-hole behavior before
it goes completely haywire? (Actually, the space around black holes, if
such exist, is curved approximately as described in exercise 8 of section
9.2.)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Appendixes

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Appendix A
Turtle Procedure Notation

This appendix provides a cursory description of the Turtle Procedure
Notation used in this book. Turtle Procedure Notation is meant to be a
consistent and readable way to describe turtle programs independent of
the quirks, details, and limitations of common computer languages, yet
in such a way that the programs can be readily translated into whatever
computer language is available. (Some sample translations are given
in appendix B.) In relation to available languages, Turtle Procedure
Notation is closest to Logo, a language developed at MIT for educational
uses. Almost all of the computer work for developing the material in
this book was done in Logo.

Basic Operations and Data Types

Turtle Procedure Notation includes the basic arithmetic operations-
addition, subtraction, multiplication, division (denoted /), and exponen-
tiation (denoted 1). These obey the usual precedence conventions; for
example, in a string of operations, multiplication and division are per-
formed before addition and subtraction. Thus, 5+2*3-7 is equal to 4.
The order of operations can be modified or clarified by using parentheses.
For example, (5+2) * (3-7) is equal to -28.

In addition to the basic arithmetic operations, there are numerous
other operations that take numbers as inputs. The SQRT operation, for
example, returns as its value the positive square root of its input (which
must be a non-negative number). By "returns as its value" we mean
that the result of the operation is available to be used as the input to
succeeding operations. For example, the command

PRINT (SQRT 144) + (SQRT 144)

will print the number 24.

Not all operations return values. The FORWARD operation, for instance,
which tells the turtle to go forward the number of units specified by its
input, does not return a value. (Such operations are frequently referred
to by the more general term command.) There are also operations that
do not take inputs. One such is HEADING, which returns the turtle's
current heading.

As with almost all computer languages, we actually use two types
of numbers: integers and real (or "floating point") numbers. Turtle
Procedure Notation distinguishes real numbers from integers by includ-

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

394 Appendix A

ing a decimal point in their printed representation. Arithmetic opera-
tions may combine integers and real numbers (for example, 3.45 + 2).

The kind of number returned is determined by the rule that the result
of a division is always a real number, whereas the result of an addi-
tion, a subtraction, or a multiplication will be real if any of its inputs
are real. For turtle programing it is desirable to maintain the position
of the turtle in real-number coordinates, but to allow the state-change
operators FORWARD, LEFT, etc., to accept either real or integer inputs. It
is convenient to keep the turtle's heading as an integer until a RIGHT, a
LEFT, or a SETHEADING is executed with a noninteger input.

In addition to numeric data, Turtle Procedure Notation also makes
use of character strings. When specifying a literal character string, you
must enclose it in quotes to avoid confusing it with commands in the
language. For example,

PRINT SQRT 144

will print 12, whereas

PRINT "SQRT 144"

will print a string of eight characters: S, Q, R, T, space, 1, 4, 4.

Variables

The assignment operator is used to assign names to data objects. A
name can be any non-numeric character string that does not contain a
space. For example,

BIG 10000

SMALL .005

CHEER "TURTLE, TURTLE, RAR RAII RAR"

followed by

PRINT BIG * SMALL

PRINT CHEER

prints 50 and the cheer, respectively.

Procedures

Procedures provide a way to build complex operations by combining

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Procedures 395

simpler ones. A procedure is simply a list of commands, which are
executed in sequence whenever the procedure is invoked, For example,
the following procedure will make the turtle draw a line 20 units long
and then return to its starting place:

TO DASH

FORWARD 20

BACK 20

Note that the procedure is defined by providing a title line consisting
of the word TO followed by the name of the procedure. The body of
the procedure is then listed under this, indented. (Actual computer
languages commonly use some means besides indentation to mark the
end of the defining process. Many languages use the special marker END.)

To invoke (or "call") a procedure, one simply uses the name of the
procedure as a command in the language, either by typing it directly
into the computer (at "top level") or by using it as one of the commands
in another procedure. There is no difference between the way one calls
a procedure and the way one calls an operation that is built into the
language. A procedure definition should therefore be thought of as a
way of extending the set of operations in the language.

Procedures may also be defined to take inputs. These are specified
by providing names for the inputs on the procedure's title line. (These
names are often called "parameters" or "dummy variables.") For ex-
ample, the following procedure is just like the above DASH, except that
it allows the length of the line to be specified as an input:

TO VARY.DASH DISTANCE

FORWARD DISTANCE

BACK DISTANCE

When a procedure is called, such as by typing VARY.DASH 100, the ac-
tual values of the parameters are substituted for the parameters' names
throughout the procedure body. A procedure may be defined to ac-
cept any number of inputs. Inputs can be of any data typenumbers,
character strings, and others which will be described below.

In addition to accepting inputs, procedures may also return a value,
or "output." This is accomplished by using the RETURN command, as in

TO AVERAGE X Y

RETURN (X + Y) / 2

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

396 Appendix A

The procedure can now be used as a value in other statements. For
example,

PRINT AVERAGE 5 7

AV 4- (AVERAGE 5 7) - 6

will print 6 and set the variable AV to O, respectively.
When the RETURN command is executed, the procedure will terminate

directly and not execute any further commands within it. It is also
possible to use this effect of RETURN without returning a value. This will
simply stop the procedure. For example,

TO LAZY.FORWARD DISTANCE

IF DISTANCE > 50 THEN RETURN

FORWARD DISTANCE

will not move the turtle if the input is greater than 50.
Turtle Procedure Notation assumes that a procedure can return only

a single entity (which, however, may be a compound data object, as
described below in the section on lists). Some other languages distinguish
"functions" from "subroutines." In Turtle Procedure Notation there is
no distinction; proceduresplay both roles.

Parentheses, Commas, and Comments

Complex expressions can often be made more legible through judicious
use of parentheses. For example,

AVERAGE X + 3 AVERAGE 3 * Y SQRT 5

is not as intelligible as

AVERAGE (X + 3, AVERAGE (3 * Y, SQRT 5))

especially if we don't remember that the AVERAGE procedure takes
two inputs. In general, readability can be increased in a procedure call
by enclosing the inputs to the procedure in parentheses, separated by
commas. One can do the same in the title line of a procedure that takes
several inputs. In contrast with many languages, this use of parentheses
and commas is optional.

Another way to increase program readability is to use comments.
Anything that appears after a semicolon on a line will be ignored when
the procedure is executed, and hence can be used as commentary.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Conditional Expressions 397

Conditional Expressions

As in most languages, our notation for turtle programs makes use of an
"if... then ... else . ." construction. For example,

TO GREATER X Y

IF X > Y THEN RETURN X ELSE RETURN Y

returns the greater of two numbers. As in many computer languages,
the "else" part is optional.

The clauses governed by THEN and ELSE can consist of more than one
command. If so, the clause is delimited by indenting as in the following
example:

TO SOLVE.QUADRATIC.EQUATION (A, B, C)

this procedure prints the real-number solutions to
a quadratic equation, given the coefficients
as inputs

DISCSQRT(B12-4*A*C)
IF DISC < O

THEN

PRINT "NO REAL SOLUTIONS"

ELSE

PRINT (- B + DISC) / (2 * A)

PRINT (- B - DISC) / (2 * A)

(Other languages use line numbers or "begin ... end" blocks to specify
the scope of conditional clauses.)

The item that is tested by the IF, as in "DISC < O" above, should be
either true or false. An operation that outputs "true" or "false" is called
a predicate. Thrtle Procedure Notation uses the predicates >, <, and
(works for testing equality of all other data types as well as numbers.)
In addition, one can define new predicates simply as procedures that
return the character strings TRUE or FALSE. For example, the following
procedure tests whether its first input is within the range specified by
its second and third:

TO BETWEEN (A, B, C)

IF BOTH (A > B, A (C)

THEN RETURN "TRUE"

ELSE RETURN "FALSE"

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

398 Appendix A

(The BOTH operation outputs TRUE only if both its inputs are true. There
is a corresponding EITHER operation.) The BETWEEN procedure could also
be written as

TO BETWEEN (A, B, C)
RETURN (BOTH (A > B, A < C))

Iteration Commands

Another element of Turtle Procedure Notation }s given by the iteration
(or looping) constructs, signaled by the word REPEAT. For example, the
forn "REPEAT (number) (commands)" repeats the designated commands
the specified number of times, as in

TO SQUARE SIZE

REPEAT 4

FORWARD SIZE

LEFT 90

The set of commands to be repeated is indicated by indenting, just as
with the conditional expressions.

Besides using REPEAT with a numeric input, one can also use the
construct "REPEAT FOREVER," which will cause the designated section
to be repeated until the user pushes the "stop" button (some special key
on the keyboard).

Another form of REPEAT is "REPEAT UNTIL (condition) (commands),"
which keeps repeating the designated commands so long as the condi-
tion is false. This is used in the following procedure, which can be
a handy way to find square roots when this capability is not built
in:

TO SQRT X

GUESS i
REPEAT UNTIL ABS(X - GUESS t 2) < .001

GUESS # (GUESS + (X / GUESS)) / 2
RETURN GUESS

A variant of this is "REPEAT (commands) UNTIL (condition)," which
is almost the same except that it tests the condition after doing the
commands, rather than before:

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Recursion 399

TO POLYSTOP SIDE ANGLE

TURN O

REPEAT

FORWARD SIDE

LEFT ANGLE

TURN - TURN + ANGLE

UNTIL REMAINDER (TURN, 360) = o

This is useful in circumstances when the condition for termination is
initially true. For instance, note that the following procedure will not
perform any turtle moves at all:

TO POLYSTOP SIDE ANGLE

TURN - O

REPEAT UNTIL REMAINDER (TURN, 360) = O

FORWARD SIDE

LEFT ANGLE

TURN - TURN + ANGLE

A final version of REPEAT is "REPEAT FOR (range) (commands)," as in
the following procedure, which prints all the integers between its two
inputs:

TO PRINT.SEQUENCE X Y

REPEAT FOR I = X TO Y

PRINT I

It is also possible to use REPEAT FOR in a slightly more general form in
which the range is specified explicitly as a list of values. This form is
"REPEAT FOR (variable) IN (list of values)," as in

REPEAT FOR I IN Cl 2 3 7 121

Recursion

Although it is implicit in the description of procedures, we should point
out explicitly that a procedure can include calls to any procedure, in-
cluding itself. Here, for example, is a simple program from chapter 1:

TO POLYSPIRAL (SIDE, ANGLE)

FORWARD SIDE

LEFT ANGLE

POLYSPIRAL (SIDE + 1, ANGLE)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

400 Appendix A

This kind of program structure, in which a procedure calls itself, is
known as recursion. One can have more complex recursive structures,
such as when procedure i calls procedure 2 which calls procedure 1.
This structure is used in the following alternative version of the DUOPOLY

procedure (subsection 3.1.4):

TO DUOPOLY (SIDE1, ANGLE1, SIDE2, ANGLE2)

POLYI. (SIDE1, ANGLE1, SIDE2, ANGLE2, 0, 0)

TO POLY1 (SIDE1, ANGLE1, SIDE2, ANGLE2, Hi, H2)

SETHEADING Hl

FORWARD SIDE1

LEFT ANGLE1

POLY2 (SIDE1, ANGLE1, SIDE2, ANGLE2, HEADING, H2)

TO POLY2 (SIDE1, ANGLE1, SIDE2, ANGLE2, Hi, H2)

SETHEADING H2

FORWARD SIDE2

LEFT ANGLE2

POLY2 (SIDEi, ANGLE1, SIDE2, ANGLE2, Hi, HEADING)

The process is started with DUOPOLY, and thereafter POLY1 and POLY2

execute alternately. The H variables are used by POLY1 and POLY2 to
keep track of the headings with which they should start drawing the
next time they are called.

Lists

One very important feature of Turtle Procedure Notation is the ability
to combine the basic data objectsnumbers and character strings-
to form compound data objects. Various computer languages allow
different compound data objects. In this book we've used only one kind
of compound data object, the list. A list is simply a sequence of data
objects. To specify a list in Turtle Procedure Notation, one lists the
objects in sequence, surrounded by brackets. For example, [1 (3+5) 7]
is a list of three numbers: 1, 8, and 7. Lists may contain character strings
as well as numbers.

More significantly, lists may contain items that are themselves lists.
For instance, [1 2 [3 4 5]] is a list of three items, the third of which
is itself a list of three items. Consequently, lists can readily be used to
represent hierarchical structures, that is, structures consisting of parts
which themselves consist of parts. We used this capability in chapter 8,
when we constructed the atlas representation for piecewise flat surfaces.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Structure-Directed Operations 401

The ITEM operation is used to extract the elements of a list. ITEM (L, N)
returns the Nth item from the list L. So

ITEM ([1 2 [3 4 5]], 3)

returns [3 4 5], and

ITEM (ITEM ([1 2 [3 4 5]], 3), 2)

returns 4. There are two other useful operations for taking lists apart:
The operation FIRST returns the first item of a list (thus, FIRST is the
same as ITEM with a second argument of 1). The operation REST returns
the list with the first element removed (thus, REST [1 2 3] returns [2 3]
and REST[2 3] returns [3]).

One very important property of lists in Turtle Procedure Notation is
the fact that they can be manipulated as first-class data objects, which is
to say that they can be assigned names using variables, passed as inputs
to procedures, returned as outputs from procedures, and so on. We made
crucial use of this property in chapter 3 when we implemented vectors
as lists of numbers and wrote procedures that had vectors as inputs
and outputs. For example, here is a procedure that takes as inputs two
vectors, each represented as a list of two numbers, and outputs their
vector sum:

TO SUM (V, W)
RETURN [ITEM(V,1)+ITEM(W,1) ITEM(V,2)+ITEM(W,2)]

So if we set

A [1 3]
B i- [5 -1]

then SUM (A, B) will return [6 2].

Structure-Directed Operations

Writing programs that deal with lists often entails unpacking items from
a list, performing some computation, and repacking the results into a
new list. This kind of operation is facilitated by a technique known
as structure-directed assignment. An example will illustrate how this
works: If L is a list of three items, then the single assignment statement

[A B C] L

will set A to the first item of L, B to the second item of L, and C to
the third item of L. A similar technique enables procedures to specify

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

402 Appendix A

structure-directed inputs in the title line. For example, the vector-sum
procedure above could also be written as

TO SUM ([Vi V2], [Wi W2J)

RETURN [(Vi + V2) (Wi + W2)]

Local Variables

In dealing with large programs consisting of many interacting proce-
dures, it i important to have techniques for making the program modular
by controlling the interactions between different parts of the program.
Onevaluable modularity mechanism that can be provided by a com-
puter language is to make it possible for the programer to assign variable
names independently in different parts of a program, without worrying
about conflicts of names or about one part of the program accidentally
destroying the variables of another part. The general problem of how
to do this, and exactly what constitutes "different parts of a program,"
is referred to in computer-language design as the issue of "scope of vari-
ables." Different languages have different conventions for dealing with
this issue.

One point on which most of these conventions agree is that the names
of inputs to procedures should be made totally internal, or local, to the
procedure call. For example, a programer should be able to use the
absolute-value procedure

TO ABS X
IF X > O THEN RETURN X ELSE RETURN -X

without worrying that the input is called X. In particular, one should be
able to write

X *- 10

PRINT ABS (X + 3)

without any conflict between the variable X outside the procedure (which
is equal to lo) and the variable X inside the procedure (which is equal
to 13).

This mechanism for local variables is especially useful in recursive
procedures, since it ensures that each call to the procedure will have its
own private set of inputs. Consider, for example, the following procedure
from subsection 2.4.1:

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

The EXECUTE Command 403

TO NESTED.TRIANGLE SIZE

IF SIZE < lo STOP

REPEAT 3

NESTED. TRIANGLE SIZE/2

FORWARD SIZE

RIGHT 120

Each instance of the procedure has its own variable SIZE, and. the
different SIZEs do not conflict.

Most computer languages also have ways of declaring variables to be
local without having them be procedure parameters, but the examples
in this book have not used this capability.

The EXECUTE Command

A final feature of Turtle Procedure Notation is the ability to execute
character strings as commands in the language. This is accomplished by
the EXECUTE command. For example,

EXECUTE "PRINT 3 + 5"

will print 8. A less silly example is the following procedure, which takes
two commands as character-string inputs and alternates them over and
over:

TO ALTERNATE (COMMAND1, COMMAND2)

REPEAT FOREVER

EXECUTE COMMAND1

EXECUTE COMMAND2

EXECUTE is useful in writing programs to manipulate other programs, for
example the "parallel-processing monitor" of subsection 2.1.2.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Appendix B
Turtle Programs in Conventional
Computer Languages

This appendix is an aid to adapting the programs in this book for
work with computer systems and languages that are widely available. It
should also be useful as a guide to selecting a computer system suitable
for work with this book. Personal computers are changing rapidly for
the better as regards advanced languages and high-resolution graphics,
and readers should take this into account.

General Considerations

Display

In addition to a computer equipped with a suitable language, work with
turtle geometry requires a graphic-output device capable of producing
line drawings. One possibility is a computer-controlled plotter using
paper and ink, although a display screen is superior for most purposes.
Fortunately, inexpensive graphic displays based on television technology--
some with built-in monitors and some designed for use with ordinary
televisionsare rapidly becoming standard for personal computers.

Programing Language

Given enough memory, essentially any programing language can do
the same things as any other. Thus, selecting a computer language
is to some extent a question of style and personal preference. But a
language that forces you to worry about details that have nothing to
do with the process you are trying to implement, or does not mesh
with good methods of problem solving and algorithm specification, can
make using a computer tedious and burdensome. On the other hand,
a computer language similar to the Turtle Procedure Notation used in
this book can simplify the programing and allow you to concentrate on
the mathematics, on inventing and exploring. It can even serve as a
language to help you think about issues and solve problems.

We list here some issues of computer-language design and say what
we think are desirable ways to deal with them from the point of view of
turtle geometry.

Procedures, Inputs, and Outputs (Extensibility)
Dividing a problem into meaningful and relatively independent subparts
is a vital step to solving any complex problem. A programing language

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

406 Appendix B

should recognize this by allowing you to define your own procedures
at will and use them whenever you want with no fuss. For purposes
of exploration it is especially useful to be able to create a complete
environment of procedures, such as FORWARD, RIGHT, and LEFT, and to
not only use them as steps in other procedures, but to also select and
execute them at will in controlling an ongoing process (such as a picture
coming into being).

Allowing procedures to have inputs vastly increases the flexibility of
such an environment of procedures. The names of procedure inputs
should be local to the procedure, so that the user need not worry about
the internals of a procedure when using it (see the section on local
variables in appendix A). The ability of procedures to output is also
important, because it enables the programer to extend the language by
adding new functions.

Repetition and Recursion (Flow of Control)
Repetition is such a useful computational structure that every language
has constructs for carrying it out. The question is whether these con-
structs are natural and easy to use. For example, a "REPEAT. . .UNTIL..

construct can always be implemented in terms of GOTO's, but this often
leads to careless errors. Recursion is nearly as useful, but unfortunately
it is not implemented in primitive languages such as FORTRAN and BASIC

since it requires the computer to keep track of different instances of the
same procedure (in a recursive hierarchy).

Data Types
For the purposes of this book we focus on one important feature: the
ability to create data types with several parts (compound data types)
and to be able to deal flexibly with the whole or the parts. The case in
point is the way we use lists to represent vectors. In Turtle Procedure
Notation these can be passed as units into and out of a procedure
(with inputs and outputs). But it is just as important to be able to
easily assemble and dissassemble such units for internal computation.
Unfortunately, mechanisms like Turtle Procedure Notation's structure-
directed operations are not at all common, and various special tricks
must usually be used, depending on the computer language. The only
other data-type issue we will be concerned with is distinction between
integers and real numbers. Real numbers are crucial for doing geometric
calculations such as vector rotations, intersections, and so on. On the
other hand, the display routines of many computer systems can handle
only integer inputs, in which case the result of the geometric calculations
must be converted to integers before being shown on the display.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Consideration of Specific Languages 407

Con8ideration of Specific Languages

BASIC

BASIC is by far the most widely available language on inexpensive
microcomputers at the present time (1981). Unfortunately, it is deficient
by several of the criteria listed above. BASIC also comes in many
incompatible versions. We have selected one of theseAPPLESOFT
II BASIC (TM)to use in examples, because it comes on a popular,
inexpensive machine (the Apple H with high-resolution graphics) that
has adequate graphics capability for turtle geometry.

Procedures Inputs and Outputs
BASIC lets you define only one program at a time. The RUN command,
which executes the program currently in memory, is essentially the only
way to make any user-definable thing happen. RUN may, however, take
an optional input that specifies the number of the program line at which
to start. In that case you can get the effect of selecting different programs
in response to direct user commands by starting the program at one of
a number of sections of code, each of which ends with END.

Most BASIC s have another mechanism, which gives the effect of having
separate procedures within a program: You can treat portions of your
program as subprocedures, or "subroutines" as they are called, by using
the GOSUB command (although you cannot name these procedures or
insulate their effects with local variables, inputs, and outputs). GOSUB
takes an input specifying the line number at which the subroutine starts.
(The subroutine ends with a RETURN.) It is sometimes possible to use a
variable to specify the line number so that programs will be a bit easier to
read. If this is the case, then you can invoke a "FORWARD" sub-
routine by saying GOSUB FORWARD, where FORWARD is a vari-
able that has been set to 10000 or whatever line number begins the
"FORWARD" subroutine. In this appendix we will use this feature for its
readability, although you may have to actually use literal numbers with
GOSUB.

Passing "inputs" to subroutines must be handled as global variables,
so you are always liable to find some subroutine destroying some other
subroutine's inputs. You can minimize this problem by establishing an
appropriate convention for choosing variable names, such as letting input
variables consist of two characters: the first letter of the subroutine name
and a number used to distinguish among possible multiple inputs. Thus
you will find yourself regularly writing code such as

Fi = 10: GOSUB FORWARD

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

408 Appendix B

or

Pl = 90 P2 = loo : GOSUB POLY

Outputs must be handled in a similar way, using, say, RF1, RF2,... for
the returned values of a FUNCTION subroutine.

Below is an APPLESOFT II BASIC implementation of turtle com-
mands that works on Apple's high-resolution graphics system. It differs
from the full vector version given in chapter 3 principally by keeping
heading as an angle rather than as a vector. "POSITION VECTOR" is in
PX, PY; "HEADING" is H; "PEN STATE" is in PS (pen is down when PS=1).

10 FORWARD = 10000 : REM the following index subroutines

11 LEFT = 10100

12 RIGHT = 10200

13 CLEARSCREEN = 10300

14 DRAWLINE = 10400

10000 REM *** FORWARD distance Fi subroutine ***

10010 WC = COS(H*3.14i59/180) : REM heading vector components

10020 HI = SIN(H*3.14159/180)

10030 WC = PX + HiC * Fi : REM add [MX HY]*Fi to position vector

10040 NY = PY + HI * Fi REM save "new-position" vector [MX NY]

10050 IF PS <> i GOTO 10070 : REM if the pen is up, don't draw

10060 Di = PX : D2 = PY : D3 = MX : D4 = NY GOSUB DRAWLINE

10070 PX = WC : PI = NY : REM update position vector

10090 RETURN

10100 REM *** LEFT angle Li (in degrees) subroutine ***

10110 H H + Li

10120 RETURN

10200 REM *** RIGHT angle Rl (in degrees) subroutine ***

10210 H = H - Rl

10220 RETURN

10300 REM *** CLEARSCREEN subroutine ***

10310 HGR : HCOLOR = 'T : REM clear the screen

10320 PX = O : PY = O : REM initialize position vector

10330 H = O : REM initialize heading

10340 PS = i : REM start with pen down

10350 RETURN

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Consideration of Specific Languages 409

10400 REM *** DRAWLINE from [Dl D2] to [D3 D4] subroutine ***
10401 REM The inputs to HPLOT center [0 01 and make increasing
10402 REM y and x correspond to "up" and "to the right."
10410 HPLOT 140 + Dl , 80 - D2 TO 140 + D3 80 - D4

10420 RETURN

Here is a POLY program that uses these routines:

100 REM *** POLY program *
110 INPUT "ANGLE?" A

120 INPUT "DISTANCE?"; D

130 GOSUB CLEARSCREEN

140 F1 D : GOSUB FORWARD

150 Li = A : GOSUB LEFT

160 GOTO 140

Notice the practice of having a program such as thiswhich is meant to
be RUN, that is, called from top level rather than called as a subprocedure-
explicitly ask for its inputs by using the INPUT command.

Repetition and Recursion
Repetition can usually be handled reasonably in BASIC with GOTO state-
ments and stop rules, as in the following sequence to compute the square
root of a number A (compare the example in appendix A):

100 G 1.0 : REM initialize guess
110 G = (G + AIG) I 2 : REM update guess
120 E = ABS(A - G*G) : REM error in guess squared
130 IF E > .001 GOTO 110 : REM stoprule is error no more than .001

Alternatively, one can use BASIC's do-loop mechanism as in the fol-
lowing sequence to accumulate in T the sum of the first 50 integers:

100 T = O : REM initialize accumulator
110 FOR N = i TO 50 DO

120 T = T + N

130 NEXT N : REM increment N and GOTO the line after FOR

Recursion in BASIC is so inconvenient in the general case as to be
almost hopeless. (One would have to implement at the user level nearly
the whole mechanism for keeping track of local variables that is built
into more sophisticated languages.) Fortunately, many of the uses to
which we put recursion can be handled by iterative processes. For
example, any "tail recursion," where the recursive call is just the last line

**

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

410 Appendix B

of the procedure, is at most just a matter of using a COTO after changing
the value of a variable whose old value is never used again. POLYSPI

and INSPI could well be written as repetitive loops with an inserted
command to change SIDE or ANGLE variables each time through the loop.

Even in cases where true recursion seems to be required, as in the
recursive designs of chapter 2, there are a few tricks that often work. If
the number of levels is small you may be able to get away with using the
subroutine mechanism. The chief problem is how to keep subroutines
from destroying their own (recursively called) inputs. This is manageable
in cases where the process of computing the inputs to the next level down
is a reversible process. That way each subroutine can maintain a sort of
"state transparency" (see subsection 2.3.2) by changing the value of its
"inputs" when it starts and undoing the change just before it returns.
For example, here is a BASIC implementation of the recursive binary
tree of 2.3.2:

15 BRANCH = 2000 : REM so we can say GOSUB BRANCH

200 GOSUB CLEARSCREEN

210 INPUT "SIZE?"; SIZE

220 INPUT "LEVEL?"; LEV

230 GOSUB BRANCH

240 END

2000 IF LEV = O GOTO 2100 : REM stoprule
2010 SIZE SIZE/2 : LEV LEV - i : REM change parameters
2020 F1 = SIZE : GOSUB FORWARD

2030 Li = 45 : GOSUB LEFT

2040 GOSUB BRANCH

2050 Rl = 90 : GOSUB RIGHT

2060 GOSUB BRANCH

2070 Li = 45 : GOSUB LEFT

2080 F1 = -SIZE : GOSUB FORWARD

2090 LEV LEV + i : SIZE = SIZE * 2 : REM undo change
2100 RETURN

Note how the main program merely sets up for the subroutine, and the
subroutine's second and last steps are inverses. It may be valuable to
have the main program set a more appropriate starting point on the
screen.

A slight variation on this (check how parity is handled in line 3030)

allows the HILBERT curve of section 2.4.3 to be written as follows:

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Consideration of Specific Languages 411

16 HIL = 3000 : REM index subroutine

300 GOSUB CLEARSCREEN

310 INPUT "SIZE?" Fi

320 INPUT "LEVEL?"; L

330 P = i

340 GOSUB HIL

350 END

3000 IF L = O GOTO 3140 : REM stoprule

3010 L = L - i

3020 Li = P * 90 GOSUB LEFT

3030 P = (-P) GOSUB HIL : P (-P)

3040 GOSUB FORWARD

3050 Rl = P * 90 GOSUB RIGHT

3060 GOSUB HIL

3070 GOSUB FORWARD

3080 GOSUB HIL

3090 Rl = P * 90 : GOSUB RIGHT

3100 GOSUB FORWARD

3110 P = (-P) : GOSUB HIL P = (-P)

3120 Li = P * 90 : GOSUB LEFT

3130 L L + 1

3140 RETURN

Data Types

BASIC's compound-data-type capability is so weak that is is almost
always best to deal with compound things in terms of the separate parts.
Thus, vectors will be handled as separate variables for components, VX,
V'I, VZ, etc. Given this, it makes less sense to subroutinize vector addition
and scalar multiplication, since setting up multiple inputs and outputs
is so clumsy. You will find yourself writing more and thinking more in
terms of components when you program in BASIC, but try to resist at
least the thinking part. Here is a subroutine to rotate a two-dimensional
vector (Rl and R2 are the input coordinates and R3 the angle of rotation;
RR1 and RR2 are the rotated coordinates; we suppress line numbers).
Compare this with the rotation procedure of subsection 3.2.2:

S = SIN(3.14l59*R3/180)

C = COS(3.l4159*R3/l80)

RR1 Rl * C - R2 * S

RR2 = R2 * C + Rl * 5

RETURN

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

412 Appendix B

Notice we have not explicitly used PERP, but only its components.
A three-dimensional YAW subroutine (see subsection 3.4.3) operating

directly on the components of heading and left vectors would look as
follows:

S = SIN(3.14159*Y1/180)

C = COS(3.14159*Y1/180)

THX = C * HX + S * LX : REM "T" FOR TEMPORARY

THY = C * HY + S * LY

THZ = C * HZ + S * LZ

LX = C * LX - S * }jX

LY C * LY - S * }Çf

LZ = C * LZ - S * HZ

MX THX : HY = THY HZ THZ

RETURN

If your display requires integer inputs, make sure to convert with an
INTEGER function.

Logo

Logo is the name for a philosophy of education and for a continually
evolving family of computer languages that aid its realization. The Logo

computer language has been used over the past ten years at MIT and
elsewhere as the basis for many innovative experiments in harnessing
computer technology to enhance education, including the experiments
that led to the writing of this book. Because Logo is such a sophisticated
and powerful language, it was for many years not feasible to design
Logo implementations for computers inexpensive enough to be used in
homes and schools, and the use of Logo was restricted mainly to research
centers. Recently, the tremendous decline in the cost of computers has
changed this state of affairs. At least two Logo implementations for
personal computersthe Apple II and the Texas Instruments 99/4
are commercially available. (Interested people should contact the Logo
Project at MIT for further information.)

Except for minor variations of syntax, Logo is substantially the same
as the Turtle Procedure Notation used in this book. In particular, Logo
is highly interactive, organizes programs as collections of procedures, in-
cludes lists as "first-class" data objects, and has built-in turtle graphics.
For comparison with Turtle Procedure Notation, here is a Hilbert curve
program (see subsection 2.4.3) in Logo. (To save us from utter boredom,
we have introduced a slight variation that draws the curve on a diagonal.)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Consideration of Specific Languages 413

TO HILBERT :SIDE :LEVEL :P

H (- : P)

RFR :P

H :P

RFR (- : P)

H :P

RFR :P

H (- : P)

END

TO RFR :P

RIGHT :P * 45

FORWARD :SIDE

RIGHT :P * 45

END

TO H :P

IF :LEVEL = O RIGHT :P * 90 STOP

HILBERT :SIDE :LEVEL - i :P

END

Notice that the program is basically a collection of recursive calls to itself
(H) interspersed with a "corner turn" primitive motion (RFR). The major
difference between the above code and the Turtle Procedure Notation
used in this book is that the variable names are preceded by colons.

Pascal

Pascal has recently become widely available in a standardized version
developed at the University of California at San Diego. UCSD Pascal
(TM) has been implemented on a number of inexpensive machines in a
form suitable for turtle geometry. We mention in particular the APPLE
II (with Pascal package) and the Terak 8510A. (The programs below use
the Apple version where there is a difference.) In addition to Pascal's
advantages of being a rather well-developed language by the criteria
we outlined, this particular version includes built-in turtle commands
MOVE, TURN, PENCOLOR (WHITE), PENCOLOR (BLACK), MOVETO, and TURNTO,

which correspond, respectively, to Turtle Procedure Notation's FORWARD,

LEFT, PENDOWN, PENUP, SETXY, and SETHEADING. There are also TURTLEX,

TURTLEY, and TURTLEANG, which correspond to XCOR, YCOR, and HEADING.

Pascal's principal disadvantages are three: Its highly structured form
requires the programer to pay attention to certain details of form which
we have deliberately omitted from Turtle Procedure Notation. For ex-

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

414 Appendix B

ample, one must always declare variables and their types (integer, real,
array, etc.) before using them. Moreover, one cannot use the same vari-
able for different types of data. These constraints not only lead to extra
typing, but interfere with convenience and flexibility. Second, although
Pascal does have facilities for handling compound data objects such as
lists, the programer must deal with these structures in terms of special
so-called "pointer variables" rather than as first-class data objects. The
third disadvantage is that Pascal is a compiled language (in contrast to
Logo and BASIC), which means there must be an extra compilation step
between writing a program and running it. The way this is generally
handled makes it difficult to generate environments of many independ-
ent, user-defined programs, such as one would do to create any of the
various turtle geometries in this book (cube, three-dimensions, and so
on). As a result, the image of creating and using a single program (as op-
posed to a continuously evolving cluster of procedures) dominates Pascal
as it does BASIC.

Procedure Inputs and Outputs
Within a program, Pascal has extensive capabilities to have separate
subparts (called procedures) which can take inputs and return values in
a number of ways. Inputs specified by the user at run time, however,
are usually handled, as in BASIC, by a separate INPUT command within
the program. Below is a sketch of a program, TURTLE, which sets up
a environment that allows a user to interactively choose commands
according to what is seen developing on the screen. The main part of the
program is a monitor loop (at the end of the program) that repeatedly
allows the user to type in a command, which the monitor then executes
as a procedure. We use a separate procedure ASK to ask the user for an
input if that is necessary. In this way, procedures such as FD (FORWARD

is reserved for a built-in command) can be used not only as direct user
commands (in the monitor), but also in other procedures that do not
ask the user for inputs.

PROGRAM TURTLE;

USES TURTLEGRAPHICS, APPLESTUFF;

VAR COMMAND: STRING; A, D: INTEGER;

PROCEDURE ASK(QUESTION: STRING; VAR ANSWER: INTEGER);

BEGIN

WRITE(UESTION);

READLN (ANSWER)

END;

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Consideration of Specific Languages 415

PROCEDURE GETCOMMAND;

BEGIN

REPEAT GRAFMODE UNTIL KEYPRESS;

TEXTMODE;

READLN (COMMAND)

(*THIS ALLOWS GRAPHICS DISPLAY TO BE MAINTAINED UNTIL

A COMMAND IS TYPED. THE METHOD OF HANDLING MIXED

TEXT AND GRAPHICS WILL IN GENERAL DEPEND ON YOUR

SYSTEM AND INGENUITY.*)

END;

PROCEDURE FD(D: INTEGER);

BEGIN

MO VE (D)

END;

PROCEDURE LT(A: INTEGER);

BEGIN

TURN (A)

END;

BEGIN (*MONITOR LOOP*)

INITTURTLE;

PENCOLOR(WHITE);

REPEAT

GETCOMMAND;

IF COMMAND='FD' THEN BEGIN

ASK ('HOW FAR? ', D); FD (D) END;

IF COMMAND='LT' THEN

BEGIN ASK('HOW MUCH? ', A); LT(A) END;

IF COMMAND='CS' THEN

BEGIN INITTURTLE; PENCOLOR(W1-IITE) END;

IF COMMAND='PU' THEN PENCOLOR(NONE);

IF COMMAND='PD' THEN PENCOLOR(WHITE);

UNTIL COMMAND'DQNE';

END.

Of course, this can serve as a model for setting up other environments
for exploration. Unfortunately, this system-type organization does not
allow the user to write even elementary experimental programs without
recompiling.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

416 Appendix B

Repetition and Recursion
Pascal has a wide varicty of REPEAT UNTIL, WHILE, FOR constructs similar
to those in Turtle Procedure Notation. Here are two samples, a POLY pro-
cedure (to be used as an extension of the TURTLE environment above) and
a SQRT function (to be used as part of some main program). See also the
use of FOR in TURTLE3D below.

PROCEDURE POLY(A, D: INTEGER);

VAR HEAD, INITHEAD: INTEGER;

BEGIN

INITHEAD : TURTLEANG;

REPEAT

FD(D);

LT(A);

HEAD : = TURTLEANG;

UNTIL HEAD = INITHEAD;

END;

FUNCTION SQRT(A, B:REAL) :REAL;

VAR GUESS: REAL;

BEGIN

GUESS : 1.0;

WHILE ABS(A - GUESS*GUESS) > 0.001 DO

GUESS : = (GUESS + A/GUESS) /2;

SQ.RT : GUESS

END;

Recursion is also neat in Pascal. Here is HILBERT again:

PROGRAM HILBERT;

USES TIJRTLEGRAPI-IICS, APPLESTUFF;

VAR L, P, S: INTEGER;

PROCEDURE HIL(L, P:INTEGER);

BEGIN

IF NOT (L = 0) THEN

BEGIN

TURN (P*90);

HIL(L-1, -P);

MOVE(S);

TURN (-P*90);

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Consideration of Specific Languages 41T

HIL(L-1, P);

MOVE(S);

HIL(L-1, P);

TURN (-P*90);

MOVE(S);

HIL(L-1, -P);

TURN (p*90)

END

END;

BEGIN

WRITE('SIZE? '); READLN(S);

WRITE('LEVEL? '); READLN(L);

INITTURTLE;

PENCOLOR (WHITE);

HIL(L, 1);

REPEAT UNTIL KEYPRESS; TEXTMODE

END.

Data Types

Pascal's compound-data types are adequate for turtle-geometry work.
For vectors one will probably want to use arrays. Here are some service
procedures in the context of a sketch of a three-dimensional turtle pro-
gram (see subsection 3.4.3). Unfortunately, Pascal doesn't allow func-
tions to output compound-data types, so subroutining vector arithmetic
is not worth the effort. On the other hand, call-by-name parameters (see
ROTATE below) make some types of vector operations transparent.

PROGRAM TURTLE3D;

USES TURTLEGRAPHICS, TRANSCEND, APPLESTUFF;

TYPE VECTOR = ARRAY[1. .3] OF REAL;

VAR I: INTEGER;

A, D, LDIST: REAL;

COMMAND: STRING;

P, H, L, U, TEMP: VECTOR;

PROCEDURE INIT;

(*THIS PROCEDURE SHOULD SET INITIAL VALUES FOR LDIST, P, H, L

U, AND PERFORM OTHER INITIALIZING ACTIVITIES")

PROCEDURE ASK; (*AS IN TURTLE PROGRAM ABOVE*)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

418 Appendix B

PROCEDURE ROTATE(VAR V, PERPV: VECTOR; A: INTEGER);

VAR AR: REAL;

BEGIN

AR : A * 3.14159/180.0;

FOR I : i TO 3 DO

TEMPEl] : COS(AR)*V[I] + SIN(AR)*PERPV[I];

FOR I : 1 TO 3 DO

PERPV[I] COS(AR)*PERPV[I] - SIN(AR)*V[I];

V TEMP

END;

PROCEDURE PROJECT(V: VECTOR; VAR X,Y: INTEGER);

BEGIN

X : ROUND(LDIST*P[1]/P[3]);

Y : ROUND(LDIST*P[2]/P[3]);

(*NOTE ROUNDING (CONVERTING TO INTEGER FOR MOVETO).

APPLE DOES AUTOMATIC CLIPPING; OTHER SYSTEMS MAY

REQUIRE SOME WORK TO MAKE SURE X AND Y ARE WITHIN

RANGE REQUIRED BY MOVETO.*)

END;

PROCEDURE YAW(A: INTEGER);

BEGIN

ROTATE(H, L, A)

(*PITCH OR ROLL ARE SIMILAR, USING H AND U OR

U AND L AS INPUTS TO ROTATE*)

END;

PROCEDURE FD(D: INTEGER);

VAR X, Y: INTEGER;

BEGIN

FOR I : i TO 3 DO

P[I] : PET] + D*H[I];

PROJECT(P, X, Y);

MOVETO (X+140, Y+95)

END;

BEGIN

(*}{AIN LOOP HERE SIMILAR TO THAT OF THE PREVIOUS TURTLE

PROGRAM. IT SHOULD INCLUDE INIT PROCEDURE.*)

END.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Consideration of Specific Languages 419

The program is intended to use the built-in penup and pendown mecha-
nism (PENCOLOR) rather than keeping its own pen-state variable.

UCSD Pascal assumes that inputs to turtle (and other graphics) corn-
mands are integers, and you must make sure of this either by computing
with integers or by converting to integers before calling them. You can
use the built-in ROUND function as we did in PROJECT.

Other Languages

APL is quite suitable for turtle geometry. It is procedure-oriented, with
inputs and outputs. It allows "environment building" in the way Logo
does. Furthermore, it is recursive and handles compound data, such
as vectors, in the cleanest fashion of any language mentioned here.
APL has not yet been picked up by any of the major producers of
inexpensive home computers. We do, however, know of at least one
major installation that has turtle commands built into APL.

Lisp is another language that is structurally very compatible with our
criteria. In fact, Logo is a direct descendant of Lisp. But so far Lisp has
not been much associated with inexpensive, graphics-oriented hardware.

Smalltalk is a language that, like Logo, was developed explicitly for
educational purposes. Not surprisingly, it fares well by our criteria, espe-
cially since it was designed to take advantage of the capabilities of high-
resolution graphics and to be an extensible, interactive medium. Though
it has not been publicly released by its developers at Xerox Corporation,
there are plans to make the latest version, Smailtalk 80. available in the
near future. Smalltalk programs are organized in a manner very different
from the step-by-step procedure model that typifies the languages dis-
cussed above. Instead, the "knowledge" in a Smalitalk program is dis-
tributed among a number of "objects" which communicate among them-
selves by means of "messages." For example, a turtle might be a kind of
object that knows how to respond to messages FORWARD, RIGHT, and so
on. This so-called "object-oriented programing" has many advantages
in dealing with graphics and simulations, and in particular with the kind
of multiple turtle projects discussed in section 2.2. Although Smailtaik's
fundamental constructs are very different from those of Turtle Procedure
Notation. the translation of any of the above programs into Smailtalk
is easy and elegant, with none of the difficulties of modularity and en-
vironment building encountered with Basic and Pascal. One can also
expect Smalitalk implementations to include built-in turtle graphics.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Hints and Answers

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Hints for Selected Exercises

Chapter 1

Section 1.1

2. Before worrying about the radius, try finding the circumference of
the circle.

8. The answer depends on whether or not the ANGLE is divisible by 8.
You should be able to guess the answer through experimentation, but
you probably won't be able to give a proof until you've looked ahead to
subsection 1.4.1.

9. In general, of two regular polygons with the same circumference, the
one with more sides has a greater area. (This is not simple to prove. A
neat proof without calculus was given by Galileo in his Dialogues on the
Two New Sciences.) Or do a direct calculation.

Otte interesting effect is that programs always close when they would
have closed if run on an infinite plane. Can you prove this?

Describe the geometric transformations as reflections in certain lines
through the turtle's initial position.

One result is that eventually, at a small enough scale, all you ever
see are straight lines.

Section 1.2

2. The first three vertices the turtle draws determine a circle. Now use
congruent triangles to show that the rest of the vertices also lie on this
circle.

Flow does the sum of the interior angles relate to the sum of the
exterior angles?

Consider the closed turtle path formed by the arc and the line. What
is the turtle's total turning while traversing this path?

9. Use the result of exercise 8 to relate the other two arcs of the circle
to the two angles formed by the arcs and their respective chords. Now
use the relation between A and these two angles.

10. Relate the angle turned by the turtle to t.he angle between the arc
and the chord formed by a side of the PULY. Now use exercise 8.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

424 Hints: Chapter 1

Use the result of exercise 10 (although, since the method of proof
suggested in exercise 10 is to use the simple-closed-path theorem, you'll
have to find another proof in order to avoid a circular argument).

Compare with exercise 3 of section 1.1.

Section 1.3

Generalize the analysis for A = 2, INCREMENT = 20 = 360/18 given
in subsection 1.3.2. To give a formula, use the fact that the sum of the
first n - i integers is equal to n(n - 1)/2.

In keeping track of the total turning, divide the basic loop into two
parts: one where the angle increases and one where the angle decreases.
Then add the corresponding angles in pairs. Alternatively, use the
following formula, which generalizes the one given in the hint above:
If S and T are integers with T > S, then the sum of the integers from
S through T (inclusive) is equal to (S + T)(T - S + 1)/2.

8. This can be done with vectors. See section 3.1, exercise 3. We'll leave
it to you to find another method of proof.

Section 1.4

Use the following fact: If we can draw an n-pointed POLY using an
integer angle, then we can also find some integer angle that draws an
n-pointed POLY with rotation number 1.

The 180 A answer depends on the value of A modulo 4. You should
be able to guess the answer by experimenting. To prove it is harder.
Try using the symmetry formula n = LCM(A, 360)/A and comparing
this with LCM(180 - A)/(180 - A). The analysis may be easier if you
take advantage of the fact (see exercise 16) that for any integers x and
y, LCM(x, y) X GCD(x, y) = xy. This reduces the problem to finding
the relation between GCD(A, 360) and GCD(180 - A, 360).

T. What is the product modulo p of R, 2R,..., (p - l)R?

11. To show that d can be represented as (integer)R + (integer)n, use
the fact that R/d and nid are relatively prime and hence that i can
be represented as (integer)R/d + (integer)n/d. Also, show that d must
divide any integer which can be represented as (integer)R + (integer)n,
which implies both that d must be the smallest such integer and that the
integers which can be represented this way are precisely the multiples of

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Hints: Chapter 1 425

d. Reducing the the numbers of the form (integer)R + (integer)n modulo
n gives the multiples of R modulo n.

14. If each of two variables is expressible in the form aR + bn, the
difference is also expressible in that form. Show that this means the
variables in the Euclid process are always of this form, including the
final step when the two are both equal to d.

Apply the same "reduction rule" EUCLID uses to find the GCD:
Imagine that we are in the case where R < n, so that we are about to
reduce the problem of finding GCD(n, R) to that of finding GCD(n -
R, R). Then suppose we already know how to find p and q such that
p(n R) + qR = d. Then, for that pair p and q, we have pn + (q -
p)R = d. In other words, if R < n and we know DIO(n - R, R) =
(p, q, d), then we should return DIO(n, R) = (p, q - p, d). This leads to
the computer procedure

TO DIO N R
IF N > R THEN

[P Q D] i- DIO (N-R, R)

RETURN [P Q-P D]

Fill in the rest of the DIO procedure to handle the cases N < R and
N R. (The statement "[P Q D] - DIO (N-R, R)" sets the three
variables P, Q, and D to the three respective pieces of DIO (N-R, R).

This is an example of "structure-directed assignment," which is a useful
although uncommon feature for a programing language. See appendix
A for more information.)

Rather than reducing the problem for (n, R) to (n, n - R), try
reducing it to (R, rem), where rem is the remainder when n is divided
by R. Suppose that the quotient when n is divided by R is quo and the
remainder is rem. If p X R + q>< rem = d, show how to express the
solution (x,y) to xn + yR d in terms of p,q, and quo. Use this to
construct FASTDIO as a recursive procedure.

II you try some examples, you should notìce that GCD(F(a), F(b))
is itself a Fibonacci number. Now, which one is it?

Try examples and you will find that x and y are themselves Fibonacci
numbers. Which ones are they?

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

426 Hints: Chapter 2

Chapter 2

Section 2.1

2. One of the important results of statistics is that the average value for
the square of the distance from home after s steps in a random walk is
proportional to s (for s large). This means, roughly, that distance from
home increases as

9. If the turtle does draw a closed path, compute the total turning over
the path and apply the simple closed-path theorem.

Section 2.2

9. Look at the situation from the point of view of the chaser. At each
step it moves CHASE. SPEED closer to the evader. But also at each step,
the evader moves "outward" from the chaser. Calculate the amount
of this outward motion. Suppose that EVADE. SPEED is greater than
CHASE. SPEED. Show that if the evader is far from the chaser the outward
motion is less than the chaser motion, so the two creatures move closer
together; and when the chaser is close to the evader the outward motion
is greater than the chaser motion, so the two creatures move further
apart. At what point do the two motions balance?

You can use analytic geometry and (i, y) coordinates. But once you
become familiar with the vector methods in the chapter 3, you should
try the following vector approach for finding the point on a given line
that is closest to a given point: If the line is represented as s + Xv (that
is, the line parallel to a vector y and passing through the point s) and the
point is p, then the point on the line closest to p is the point r = s + X0v
for which the line from r to p is perpendicular to vthat is, the point
for which

(p - s - Xov) . y = O.

Solving this for Xo gives

X0 -
(p - s). y

v.v
Hence, the required point is s + Xv, where X has this value.

Suppose that the defender has speed k times that of the attacker,
and starts out less than k times as far from the target. (Otherwise, the
attacker could actually reach the target.) Consider this description of

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Hints: Chapter 2 427

the optimal point to head for when k lit is the closest point to the
target, which is equally far from both players.

Section 2.3

4. Let the length of the branch drawn at the highest level be L. What
is the sum of the lengths of the two branches drawn at the next level?
What is the sum of the lengths of the four branches drawn at the next
level (and so on)?

6. To find the total length, consider that each level has three times as
many branches as the preceding one. Use the formula for the sum of a
geometric series:

- i
x1

Consider only complete spirals, which result from running EQSPI
infinitely forward and backward in time. Then there can be no such
thing as a size parameter, because just rotating the spiral does the same
thing as increasing or decreasing size.

Show that each pass through the loop draws a scale model of the
previous pass. Now focus on the net state change achieved in each pass
in terms of that of the first pass.

Section 2.4

Draw half the side of the largest outer POLY, turn and do the process
recursively with a smaller side, and complete the outer POLY without
interruption. The trick is to find the factor that gives the reduction in
size from one POLY to the next. You will have to use trigonometry.

For the length: What is the ratio of the length for level n to the
length for level n + 1? For the area: Decompose into a sum of equilateral
triangles. What is the ratio of the total area of the level-n triangles to
the area of one of the level-(n + 1) triangles?

4. The Hilbert program at level n contains three FORWARD instructions
plus four recursive calls. If f(n) is the length of the level-n curve, write
an equation for f(n) in terms of f(n - 1).

8. If you remove the four outer diagonal lines (darkened in the figure),
the curve breaks into four pieces. Try giving a recursive description of
each of the pieces.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

3. Let S be the length of the first side. From each side of the POLYSPI,

subtract a vector of length S parallel to the side. What is the sum of
the pieces subtracted? What is left? (If the figure closes, then the turtle
ends up in the initial heading, so the number of steps taken to close is
a multiple of the number of steps in a POLY with the same angie.)

5. In terms of the spirograph analysis, suppose one arm moves in
increments of ANGLE1 and the other in increments of ANGLE2. When
do the two arms line up?

13. There is a different sense of "approximately symmetric," which be-
comes better as the difference between the displacements VECTOR (Al ,Si)

followed by VECTOR (A2, S2) as opposed to VECTOR (A2, S2) followed by
VECTOR (Al ,Si) becomes visually negligible.

Consider the distribution of numbers in the slot process.

Look at the assignment of the numbers in the slot process. Show
that if the number i gets assigned to an odd-numbered slot then all odd
numbers get assigned to odd-numbered slots and all even numbers get
assigned to even-numbered slots; and conversely if i is assigned to an
even-numbered slot. Now consider the sums of the numbers in the odd
and even slots.

Show that there exist integers in and n with 2 = 2 (mod q).
Then show that we must also have 2m1 2n4 (mod q) and so on.

Use the formula

i
x-1'

which gives the sum of a geometric series.

Rotate the sum by A and apply the vector form of the POLY closing
theorem, or else rotate by 3A and look at the result.

Use Fermat's Little Theorem (see exercises for section 1.4) and the
fact stated in exercise 17.

Section 3.2

5. Try to solve for a and b. What is the necessary condition for writing
down a solution?

428 Hints: Chapter 3

Chapter 3

Section 3.1

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Hints: Chapter 3 429

As a vector equation this condition is

Perp(avj + by2) = by1 + ay2,

which must hold for any a and b.

Use the net displacement formula for DUOPOLY, neglecting the constant
center vector.

Section 3.3

2. The points are given by the vector equations

NOSE = P + TURTLE.HEIGHT X II,

LEFT.LEG = P + TURTLE.WIDTH X Perp(H),

RIGHT.LEG = P - TURTLE.WIDTH X Perp(H).

Section 3.5

Use dot product.

You could work this out in coordinates, but a neater way is to make
use of the definition of dot product in terms of projection. Use the facts
that the projection of y onto w is O if y and w are perpendicular, and
that the projection of y onto y is v.

Relate ivi, wi, y . w and A to Proj(v, w).

If the vectors form the sides of a triangle, then t + y + w = O.
Notice that the angle opposite t is 180 minus the angle referred to in the
preceding exercise.

You should discover that these three-dimensional looping programs
close only in the degenerate case when the figure lies in a plane. Non-
planar figures lie along a helix, just as POLYs lie along a circle in two
dimensions.

We gave two proofs of the POLY closing theorem in subsection 1.2.2.
The first proof, that the vertices of POLY lie on a circle, clearly uses the
fact that the motion is in a plane. But how about the second proof?
That one, remember, showed that assuming that the path doesn't close
leads to a contradiction. What is this contradiction, exactly? How does
it rely on the fact that the motion is in a plane?

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

430 Hints: Chapter 4

9. ROLL until ex is in the plane of ez, p. Now rotate in the ex, ez plane
(YAW) until ez is pointing toward p. Finally, ROLL opposite to undo your
first ROLL and leave the angle between ey and the ez, p plane the same
as when you started. The sine and cosine needed for the first ROLL are
pey/s and p'ex/s, where s is the square root of(pex)2+(pey)2. The
cosines and sines for the second rotation are then ez.p/IpI and exp/lpI.

A four-dimensional cube is a three-dimensional cube at t = 0, con-
sisting of the points (0,0,0,0), (0,0, 1,0), (0, 1,0,0), (0,1,1,0), (1,0,0,0),
(1,0,1,0), (1,1,0,0), (1,1,1,0) connected in the appropriate way, plus
one at t i with corresponding vertices connected. A turtle procedure
to draw this can be generalized from drawing a cube with the follow-
ing procedure: Draw a square (FORWARD 1, LEFT 90 done four times),
FORWARD 1, PITCH 90, and repeat this whole sequence four times. As
far as rotating in four dimensions, you can check that rotating x, y coor-
dinates and leaving z and t alone is a rotation; that is, it leaves all
distances the same. In general, there will be one plane where the action
is (like x, y here) and an invariant plane (the analog to a fixed axis).
That means there are six fundamental rotations.

Chapter 4

Section 4.1

2. The program is equivalent to a repeating fixed instruction sequence
that will complete one basic loop when LOCAL . PHASE returns to O modulo
360. Thus, it will close when both LOCAL . PHASE and the total turning
are O modulo 360.

Cpnsider some of the techniques used in the interpolation program
of exercises 6-13. When exactly is a scissors a nondeformation? What
exactly are the conditions under which a SHRINKSEG (exercise 5) causes
a change in topological type? Are there other kinds of kinking or
unkinking? Look at the criteria for pruned programs (exercise i of
section 1.2), and make sure you rule out changes that unprune in such
a way as to change total turning.

17. To find the extra piece of information, consider the case of no
crossing points, then one crossing point.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Hints: Chapter 5 431

Section 4.3

1. Imagine the turtle walking along the curve. Is the turtle's left foreleg
or right foreleg the one that lies in the inside region?

3. Consider figure 4.16 together with the phenomenon illustrated in
figure 4.11b.

5. Consider the set of minimum distances between nonadjoining seg-
ments.

Section 4.4

Use the ideas in subsection 4.4.3.

Spirals may or may not have infinite length or infinite total turning.
The EQSPI spiral of section 2.3 has infinite total turning but finite length
(from any point inward). If a turtle can travel at a constant speed and
can turn as fast as necessary to follow any curve, an EQSPI maze does
not spell doom unless it extends infinitely outward as well as inward.

Chapter 5

Section 5.1

1. How does the question of which side of the curve the turtle considers
the "inside" relate to the question of which turning the turtle considers
to be positive and which turning it considers to be negative? Compare
exercise i of section 4.3.

4. Focus on the process of walking. If the turtle's right and left legs
are doing the same thing, that adds an additional symmetry constraint
beyond each leg independently marching off equal-distance steps.

5. The path can depend on size of the turtle, but not if you use smaller
and smaller turtles until the turtle is much smaller than any features of
the surface. This is the essence of calculus, and it requires surfaces that
do not have arbitrarily small features ("smooth" surfaces).

6. Suppose we decide to compute the excess around a closed path as
the net change in pointer heading. Then a trip around the sphere's
equator and a trip around a circle in the plane both seem to cause no
net change in pointer heading. But look more carefullywhat is the
difference between what a pointer does on the equator as compared to
the planar circle where Excess = O?

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

432 Hints: Chapter 5

8. Consider the answer for exercise 7, where a turtle has one side in the
middle of one lane and its other side in the middle of the adjacent lane.

Section 5.2

1. What is the region whose curvature the excess of the path is measur-
ing?

Given two subdivisions of the surface, find an even finer subdivision
that includes them both.

7. Find a subdivision of a football into polygons for which you know
the excesses.

11. A small model of a cone is part of a larger one.

13. For global r look at the "real" radius of the circle. (The "real"
center of the circle is not in the surface.) Answers to many of these
question will be found in chapters 6 and 7.

FilI in the holes. Now how much cutwature does the surface have?
Cut them out. How much curvature did you remove?

Think about the finished umbrella. You can tell its total curvature
from a turtle path around the edge. If you start cutting away ribbon after
ribbon from the edge, does the total curvature ever increase, indicating
that you cut away a strip of negative curvature? Now go back and relate
this to things you could measure on the piece.

Section 5.3

2. Cut and paste.

This is a simple generalization of the "rectangle" argument for the
curvature of the tin can given in the text.

The crucial part of the proof is on the turtle path common to both
areas. Look back at exercise 5.

10. The result is topologically equivalent to one handle.

12. Choose any point p not on the surface, and let q be the farthest
point on the surface from p. What must the surface look like near p?
Compare exercise 9 of section 5.2.

13. Since the surface lies in three-dimensional space, it must be equiv-
alent to a sphere with a bunch of handles attached. Now, what can

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Hints: Chapter 7 433

you say about the total curvature? Could it be zero? Use the previous
exercise.

Since the surface is closed, exercise 12 implies it must have a point
of positive curvature, which can only be a vertex. (No curvature is
concentrated along any edge.) But all vertices are the same, so all
vertices must have postive curvature. By exercise 13, therefore, the
surface must be topologically equivalent to a sphere and hence have total
curvature 4ir. This total curvature is distributed among y vertices, all
containing the same amount of curvature, c. Therefore, vc = 47r. Each
vertex, on the other hand, is made up of a vertex from each of f faces
coming together there. If the vertex of the regular polygon has interior
angle i, then the curvature at the vertex is given by c = 2ir - fi. (If

you don't understand this, go over the section on curvature of cones.)
In addition, for a regular polygon with s sides, i = ir - 2ir/s. Finally,
it is clear that f, the number of faces meeting at a vertex, must be at
least 3. Now, using all of this, show that i must be less than 2ir/3 and
therefore s must less than 6; that is, there are no Platonic solids made
from polygons with six or more sides. Finally, by analyzing the cases
for s = 3, 4, 5 show that the only possible Platonic solids are the ones
listed. What are y, f, i, and s in each case?

The definitions of face, vertex, and edge are at issue.

Chapter 7

Use the fact that the length of a chord that subtends an arc of
measure O is 2r sin , where r is the radius of the circle. Apply this to
the chord common to the two arcs that make up the path of the fixed
point. Show that the radius of one of these is sin r and the other is

sJi - sin2rcos2 P

The proof that a fixed point exists follows the same outline as
the proof in the text for the special case of perpendicular axes, except
that the great circle going through both poles replaces the Greenwich
longitude. The lemma in the text showing that a fixed point implies a
rotation completes the proof that any two rotations combine to give a
net rotation. For any sequence, the above result can combine the first
two into a single rotation, and then that can be combined with the next,
and so on.

Set up coordinates with z and x as before and y perpendicular to
them. Now introduce t perpendicular to z but in the plane of arc B.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

434 Hints: Chapter 8

Show that t = (sin -y) y - (cos -y) x. Finally, rotate z toward t to produce
b and take the dot product with a.

13. Use the approximations sin x x and cos x i - x2/2 and drop
very small terms (more than degree 2 in a and ß).

Check that, for each side of measure a of the original triangle, one
will find an angle of a in the polar triangle.

Chapter 8

Section 8.1

2. Use an array (or a list), and store the answer to the ith question in
the ith entry of the array. One way to number questions "which face
and edge connect to edge e of face f?" is i = 4f + e.

8. What is the total curvature of the n-holed torus? If you identify edges
in the atlas so that there is only one vertex on the surface, how much
curvature will that produce?

Think about a turtle carrying a flag around a strip enclosing part
of the edge. Better yet, use the recipe for concentrated curvature given
in exercise 5 of section 5.3.

Qualitative features of this kind of gluing can be seen by viewing it
on a special "map" of the surface as follows. Consider the map to be a
plane with a line (the glue) drawn on it. Everything is as usual except
that the scale of the map changes as you cross the line. As a turtle walks
at a constant speed on the surface, it appears to speed up or slow down in
crossing the glue line on the map. Now model the turtle as a two-wheeled
creature (wheels turning equally fast) and take a look at crossing that line
at an angle. One of the turtle's wheels will cross before the other, and
its speeding up (or slowing) will cause it to gain (or lose) ground on the
other wheelthat is, the turtle will turn. This deflection will not happen
if the crossing is made perpendicular to the edge. That dependence on
angle of intersection causes it to appear that the curvature concentrated
along the edge depends on the measuring process and is not well-defined:
A square with edges crossing perpendicular to the line will not have the
same total turning as a triangle that crosses the line at the same points.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Hints: Chapter 8 435

Section 8.2

2. Remember that curvature can only appear at the vertices.

5. Establish an orientation on each face and check that no contradiction
can be found.

8. There are some easy answers: two spheres, two tori.....But how
about surfaces that come in one piece? Think about total curvature.

9. Simply "reversing right and left" is not enoughyou can do that by
standing on your head. You need an effect that cannot be gotten by
any local, continuous operation. How about being able to put your right
hand in your left glove? Suppose you took a trip (leaving you gloves at
home) that allowed that trick when you got back. Would you be able to
read a book you took with you? Would a friend who stayed with your
gloves be able to read that book?

Section 8.3

Compute using a net which is set up so that ends of the handle match
with edges of the net.

Given nets N1 and N2, show how to produce a "combined" net N12
that "contains" both N1 and N2 by essentially laying one on top of the
other and adding vertices as necessary. Be careful to show that N12 can
be constructed in all cases to satisfy the requirements of being a net.
Show that N1 and N2 can each be transformed to N12 by elementary
operations.

5. Show that such a surface can be "closely approximated" by a piecewise
flat surface. To get started, consider how to approximate any simple
closed curve in the plane by a polygonal path and look at a continuous
deformation from one to the other.

10. Assume that the net does not have any concentrated curvature along
its arcs. Then justify the assumption later if you can. You can use the
net itself to define pieces of surface and paths around which to compute
curvature. The trick is to relate angles turned by the turtle to interior
corner angles again, and to note that the sum of corner angles at a vertex
is always 27r.

11. What does the "local terrain" look like to a turtle standing at the
"bad" vertex? Where does the proof of K 27r for piecewise flat
surfaces break down for the double cube?

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

436 Hints: Chapter 9

A useful parameter for a regular net is XlocaI = V - E + F per
face. If S = number of sides to a face and T = number of arcs from a
vertex, show that XlocaI = 1 - S/2 + SIT. Then try S = 3,4, 5,... in
sequence, checking for solutions to x = FXlocaI.

Use the hint to exercise 14.

Xlocal = O is sufficient to ensure a regular net. This gives S = 3, 4, 6
(see exercise 15). These are easy to draw. Try drawing S = 5, T = 3
orS 8, T = 3.

Consider tiling an ever larger piece of the plane. As an example
take a square consisting of n2 smaller squares. At any stage we have
three types of squares: those on the interior of the tesselation, those
on the edge, and those in the corner. We also know that the Euler
characteristic of the entire net must be equal to 1. If one takes Xi,
XE and Xc to be the local Euler characteristics for each of these types,
then (n - 2)2X1 + 4(n - 2)XE + 4Xc = 1. In order for this to hold at
large n, the coefficient of n2 (Xi) must certainly be zero. This argument
generalizes to show Xi = O for any infinite-plane tesselation.

Chapter 9

Section 9.1

Only (3) and (4) will be affected. Assume that sin and cos now take
degrees as inputs, not radians, and you want to convert to degrees before
returning DEMON. TURNING.

TT(r) = 2ir - O; C(r) (2ir - O)r with O the constant pie angle.

Look back to exercise 7 of section 5.1.

Straight-line latitudes replace the circular latitudes of the old scheme.
Leaping is in the x direction.

Section 9.2

8. Looking into the region would be something like looking at a reflection
of the world around you in a spherical mirror, except it would be an
entirely different, infinite world inside the sphere you would be seeing!
If you were small and flexible enough to squeeze through the spherical
opening (the neck of the slice in the figure), you would find yourself in a

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Hints: Chapter 9 437

different flat region of space. In science fiction terms, the spherical neck
is a "wormhole" connection between two otherwise normal universes.

9. To point out heading, you will need to choose a spatial dimension and
use it to represent time. For the parabolic trajectory use the dimension
perpendicular to the plane containing it. The stream will be a parabolic
arch in spacetime (like a sheet of paper bent so that its cross-section is a
parabola), and droplets will be headed diagonally "up and over" within
it.

Section 9.3

3. The largeness of the "falling" effect of gravity is due to the large
speed of light.

8. Take a vote.

The key to the independence of method of sensing ticks is that the
message mechanism doesn't change in time.

Construct two events that are spacelike with respect to one another,
and observe them from a moving frame of reference.

Lorentz rotations leave 45° lines in the plane of rotation invariant.
If a light ray has a heading not in that plane (not going directly toward
or away from the sun), it will not project into that plane as a 45° line.

Your hand is actually accelerating the apple, which only appears "at
rest" in your hand.

Section 9.4

Use the formula in the text, TURNING.PER.TIME m/r2. Ignore any
other small effects, such as leaping.

Very eccentric orbits near the sun give the most precession. Generally
speaking, you know that your simulation is getting near perfect accuracy
when reducing the step size does not change the result much. You can
estimate error by assuming it to be proportional to step size: If you
reduce step size from STEPSIZE to F X STEPSIZE, the error in the result
will be about F X (change in result).

7. The vector projection (y . S) X S is, in coordinates, just setting the
non-S coordinates to zero.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

438 Hints: Chapter 9

11. Align the gyroscope in the plane of the orbit for maximum visible
effect, and take the orbit near the surface of the earth. Use the formulas
TURNING.PER.ANGLE = m/r (see subsection 9.4.4), and m = GM/c2 in
physical units (see exercise 4).

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Answers to Selected Exercises

Chapter 1

Section 1.1

All of the POLYs in the sequence have the same circumference: 360
turtle units. Thus, the limiting circle has a radius of 360/27r 57 turtle
units.

According to the previous exercise, POLY(1, 1) should have a radius of
360/27r turtle units. So to make a circle of radius r in steps of 10 turning
each would require a FORWARD step of 2irr/360 c 0.0175r. Thus, an arc
procedure can be defined by

TO ARC (RADIUS, DEGREES)

FORWARD.STEP RADIUS * .0175

REPEAT DEGREES

FORWARD FORWARD. STEP

LEFT 1

(This assumes that the number of degrees in the arc is an integer.)

We know from exercise 2 that PQLY(D, A) draws a circle of radius r =
360D/2irA. Hence, the radius of curvature, DIA, is equal to 360r/27r.
If A is measured in radians, then r is equal to the radius of curvature.

There are three different nine-sided figures, produced by angles 40°,
80°, and 160°, and two different ten-sided figures with angles 36° and
108°. See section 1.4 for a way to determine the number of different
n-sided POLYs in general.

For POLY vs. DOUBLEPOLY with the same ANGLE, if the ANGLE is

divisible by 8, the two figures have the same n-fold symmetry. Otherwise
DOUBLEPOLY has n/2-fold symmetry to POLY's n-fold symmetry. After
reading subsection 1.4.1 you should be able to prove this, using the
symmetry formula given in that section together with the fact that
LCM(A, 360) = LCM(2A, 360) unless A is divisible by 8.

POLY(5, 5) has the larger area, since it is closer to a circle.

One example is an increment of 20 and an angle equal to 10 times an
odd number. An analysis of the symmetry of INSPI is given in subsection
1.3.2.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

440 Answers: Chapter 1

12. Interchanging RIGHT and LEFT reflects the picture in the line along
the turtle's initial heading. Interchanging FORWARD and BACK can be
described as reflecting in this line followed by reflecting in the perpen-
dicular line. (This can also be described as 180° rotation.) Reversing the
order of the program reflects only in the perpendicular line (assuming
that the program ends with the turtle in the initial position and head-
ing). If we call these operations A, B, and C respectively, then A and C
make B; A and B make C; B and C make A; and A, B, and C together
make no change.

15. The following program draws an ellipse with size parameter S and
eccentricity (1 + E)/(1 - E). It uses a variable, N, to keep track of
when to draw with high and when with low curvature. Techniques to
prove this will be developed in chapter 3.

TO ELLIPSE S E

Ni-O
REPEAT 360

RIGHT N FORWARD S LEFT N

LEFT N FORWARD S*E RIGHT N

N N+1

Section 1.2

1. The pruned program should alternate FORWARD and turn (RIGHT and
LEFT) commands and should not have any FORWARD O commands nor
any turns greater than 180°.

3. The finiteness part follows from the fact that the vertices lie on a
circle. (This is true for any angle, rational or not, as you discovered if
you did exercise 2.) But the path can never close. If it did, the total
turning would have to be an integer multiple of 360°. But no integer
multiple of the irrational angle can be an integer multiple of 360°, or
that angle could be expressed as a ratio.

5. You need a third input to accumulate total turning:

TO POLYSTOP (SIDE, ANGLE, TURN)

FORWARD SIDE

RIGHT ANGLE

IF REMAINDER (TURN, 360)= O THEN RETURN

POLYSTOP (SIDE, ANGLE, TURN + ANGLE)

The program is called with the third input equal to the second.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Answers: Chapter 1 441

Each interior angle is equal to 1800 minus the corresponding exterior
angle. Thus, the sum of the n interior angles is equal to 180n minus
the sum of the exterior angles, or 180n - 360; that is, 180(n - 2). For
a regular n-gon, all interior angles are equal, so each one is equal to
180(n - 2)/n.

For the closed path consisting of arc and line, the total turning is
180 - A plus 180 - B plus the turning over the arc. Since this must
sum to 360, we have that the turning over the arc is equal to A + B.

Take A equal to B in exercise 7 to get 9 2A.

Let 0 and 02 be the other two arcs of the circle, and let A1 and A2
be the angles formed by the arcs and their respective chords. By the
result of exercise 8, 01 = 2A1 and 02 2A2. But A1 + A2 + A = 180
(look at the three angles formed at the apex of the inscribed angle) and
01 + 02 + 0 = 360. Therefore, A = 0/2.

12. If L is the distance between the wheels, then the bicycle is basically
performing a POLY with side L and angle 0. As discussed in the answer
to exercise 4 of section 1.1, the resulting circle has radius 360L/2irO if
O is measured in degrees, or L/0 if O is measured in radians. Note that
L/0 is the radius of curvature of the path.

Section 1.3

36A + 180 (mod 360).

nA + INC X n(n - 1)/2, or, equivalently, nA + (n - 1)180.

Let B = BOTTOM and T = TOP. Over one cycle of the basic ioop, the
successive angles turned are

B,B+1,...,T-1
as the angle increases and

T,T 1,T 2,.. .,B+ i
as the angle decreases. Adding these pairwise,

B+T,(B+1)+(T-1),...,
gives T - B terms of T + B each, or (T - B)(T + B) = T2 - B2 for
the entire loop. For example, taking T = 9 and B 3 gives a total
turning of 81 - 9 = 72; this is fivefold symmetry.

11. These are just POLYs, or decorated versions thereof!

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

442 Answers: Chapter 1

Section 1.4

350 is iO (mod 360): p = 1, q = 36, so 36 points with rotation
number 1. 35: p = 7, q = 72. 37: p = 37, q = 360. 12h: = 5,
q=144. 26:p=2,q=27.

If nA 360R, where A is an integer and n and R have no common
factors, then n must divide 360. Thus, the POLYs that can be drawn
with integer angles are precisely the ones for which the number of points
divides 360.

3, In going from A to 180 - A the number of points stays the same
if A is odd, doubles if A is divisible by 4, and gets cut in half if A
is congruent to 2 modulo 4. To prove this, use the symmetry for-
mula n LCM(A, 360)/A. Together with the relation LCM(360, A) X
GCD(360, A) = 360A, the symmetry formula can be written n 360/
GCD(360,A). The symmetry for 180A is 360/GCD(360, 180A). So
the problem reduces to comparing GCD(360, A) with GCD(360, 180 -
A). It's not too hard to check that these are equal if A is odd, that
GCD(360,A) = 2 X GCD(360, 180 - A) if A is divisible by 4, and that
GCD(360, A) = (1/2)GCD(360, 180A) if A is congruent to 2 modulo 4.

If nxA is a multiple of xB, then A is the same multiple of B; if nA is
a multiple of B, then xA is the same multiple of xB. So the brute-force
method will stop with the same n whether we use A and B or xA and
xB. Therefore, LCM(xA, xB) = xLCM(A, B). For the last part, simply
pick x equal LCM(q, s), use the prime-factorization method on xp/q and
xr/s, then divide by x.

A and 360A will produce figures that look the same, so the number
of different-looking n-pointed POLYs will be half the number of integers
less than and relatively prime to n. For n = 10 there are two different
ones, for n = 36 there are six, and for n = 37 there are eighteen.

(1000000) = 1000000(1/2)(4/5) = 400000.

Since the multiples of R run through all the integers modulo p, we
have, modulo p

RX2RX3RX...X(p-1)R=1X2X3X...X(p-1),
or

R1X1X2X3X'»X(p-1)=1X2X3X...X(p-1).
Since 2, 3,... have no factors in common with p, we can divide both sides
of the congruence by each of these successively to obtain the result.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Answers: Chapter 1 443

10. If we can solve p5R - q5n = s for any s then let p = Pi and
q = -qi to get pR + qn = 1. Conversely, given p and q such that
pR + qn = 1, set p5 = sp and q = sq to get p3R - q5n 5.

15. The "GCD" of and is . In general, if a/b and c/d are fractions
reduced to lowest terms, then the program outputs GCD(a, b)/LCM(c, d)
(see exercise 4). If the two inputs are not rational multiples of each other,
the program never terminates.

The complete procedure is

TO DIO N R

IF R = O

RETURN [1 0 N]

IF N > R

THEN

[P Q D] DIO (N-R, R)

RETURN [P Q-P D]

ELSE

[P Q D] - DIO (R-N, N)

RETURN [Q-P P D]

The first clause works because DIO is doing the same reduction as Euclid's
algorithm, so if R gets down to zero, N must equal the GCD.

With rem and quo defined as in the hint to this problem, we have
p X R+q X rein = d, which implies that q X n±(pq X quo) X R = d.
The corresponding recursive procedure is

TO FASTDIO (N, R, REM, QUO)

IF R=O THEN RETURN [1 0 N]

[REM QUO] 4- [REMAINDER(N, R) QUOTIENT(N, R)]

[P Q D] FASTDIO (R, REM)

RETURN [Q P-Q*QUO D]

The QUOTIENT function returns the integer quotient of its arguments.
The function is called with two auxiliary inputs REM and QUO. (The
initial values for REM and QUO are irrelevant. You may as well use O
for the inputs.) These inputs are needed to ensure that REM and QUO

are local to the procedure call. Otherwise the value of QUO would be
changed during the recursive call. (Technically, we only needed to make
QUO a local variable, since REM is not needed after the recursive call.) See
appendix A for explanation of local variables.

lT X 62 + 117(-9) = 1; 1234567 X (-3553793) + 7654321 X
573192 = 1.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

444 Answers: Chapter 2

The fact that the EUCLID process is inverse to the FIBONACCI process
means that, if you call EUCLID with F(n) and F(n-1) as inputs, EUCLID
will reduce that to a recursive call with F(n 1) and F(n 2) as inputs,
which reduces to F(n-2) and F(n-3), and so on, until we get to (1, 1).
This shows that F(n) and F(n - 1) are relatively prime.

The procedure runs so slowly because, for M < N-2, FIB (M) is com-
puted many times. For example, FIB(N-2) is run as a subprocedure to
FIB (N), but also as a subprocedure to the other subprocedure of FIB (N),
namely FIB (N-1). You can speed things up by using the following alter-
native method for computing F. (Can you see why this gives the same
result?)

TO FIB N
S- i
T#O
REPEAT N

NEW.S i- S+T

TS
S NEW.S

RETURN S

Did you guess that GCD(F(a), F(b)) = F(GCD(a, b))? It's not easy
to prove. (This result, known as Lucas's theorem, was discovered in
1876.) If you're interested in seeing the proof, take a look at D.E.
Knuth's Art of Computer Programming, vol. 1 (Reading, Mass.: Addison-
Wesley, 1968).

You should discover that F(n-3)F(n)F(n-2)F(n-1) = (-1).
It's not hard to give a proof using induction and the relation F(n)

F(n - 1) + F(n - 2).

By examining successive pairs in the sequence

(p, q) - (p + q, p) - (2p + q, p + q) - (3p + 2q, 2p + q) -

you should be able to deduce the formula F(p, q; n) = pF(n)+qF(n-1).

Chapter 2

Section 2.1

1. RAND(-50,50) and R.AND(O,50)-RAND(O,50) both produce numbers
in the range 50 to 50, but the distribution is different. In the

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Answers: Chapter 2 445

first case, the numbers are selected with equal probability. In the second
case, the numbers tend to bunch up around 0. For example, the only
way that the second method can produce 50 is if the first RAND (0,50)
is 50 and the second RAND(0,50) is 0. On the other hand, the second
method will produce O whenever the two random numbers selected are
equal. In fact, with the second method, the odds of producing zero are
51 times the odds of producing 50. A turtle using the second method
would tend to turn smaller angles than one using the first.

Suppose the turtle starts out at distance D0 and follows the procedure
for n steps to end up at distance D. Since the turning at each step
is DISTANCE - DISTANCE. LAST . TIME, the total turning over the entire
path is D - D0. If the path is closed, then D = D0, so the total
turning must be zero. But the simple-closed-path theorem says that the
total turning over a simple closed path cannot be zero.

Let DX be the difference between the x coordinates of point and
turtle, and let DY be the difference between the y coordinates. Then the
DY/DX is the tangent of the angle TOWARDS, assuming that an angle of
90° means straight up. Assume that XCOR and YCOR output the z and
y coordinates of the turtle, and that ARCTAN computes arc tangents in
degrees. Then TOWARDS can be implemented as

TO TOWARDS [PX PY]

[DX DY) [PX-XCOR PY-YCOR]

IF DX > O THEN RETURN ARCTAN (DYJDX)

IF DX < O THEN RETURN 180 + ARCTAN (DY/DX)

RETURN 90 * SIGN DY

This assumes that ARCTAN returns angles between 90° and +90°,
and that SIGN returns +1 or 1 depending on the sign of its input.
The program gives the correct answer modulo 380, but in the range
from 90° to +270°. (You decide what to do if both DY and DX are
zero.) If HEADING returns the turtle's heading, then BEARING (P) is just
TOWARDS (P) -HEADING.

Section 2.2

6. For three bugs, each bug travels two-thirds the side of the original
triangle. For n bugs, let A = 360/n; then the distance trave)ed by each
bug is equal to the side of the original polygon divided by i - cos A.

9. Let E be EVADE. SPEED and C be CHASE. SPEED. If the evader is
distance D from the chaser and moves distance E at a bearing of 90°,
then

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

446 Answers: Chapter 2

the new distance from the chaser is /D2 + E2. Thus, at each point the
evader is moving outward from the chaser a distance of /D2 + E2 D.
When D is small this is approximately equal to E, which is larger than
the amount C that the chaser moves toward the evader, so the net result
is that the evader ends up further away. When D is much larger than E
the outward motion is approximately E2/2D, which is small, so the
chaser motion dominates and the net result is that the chaser moves
closer. The stable distance is the one at which these two effects balance;
that is, where

C \/D2+E2_D
or

D E2C2
2C

11. If A is the attacker's position, D is the defender's position, and
T is the target's position, then we are looking for the point on the
perpendicular bisector of the line from A to D which is closest to T.
Using the vector method outlined in the hint, we can represent the
perpendicular bisector as s+Xv where s (A+D)/2 and y = Perp(D-
A). Then, as given in the hint, the point is s + Xv where

(Ts).v

We translate this into Cartesian coordinates so you can check your
answer if you didn't use vector methods:

(x, y) = (s + Xvi, s + Xv),

where

(A+D A+D\(s,$)=
2 ' 2

(vi, v) = (Du + A, D -

v(T - s) + v(T - s)
v2 + v,2

12. The optimal strategy for each player is to head for the point closest
to the target both can reach in the same time (assuming the initial posi-

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Answers: Chapter 2 447

tions and speeds are not such that the attacker can actually reach the
target before the defender). Using analytic geometry, you can determine
that this point is the closest point to the target which lies on a certain
ellipse, that is determined by the initial positions and speeds of the
players.

Section 2.3

4. LEVEL X LENGTH.

6. Total length of branches for LENGTH = L and LEVEL = n is 3 X L X
(3fl - 1)/2.

EQSPI(n, n, n) does not approach a limiting curve. However, if the
growth factor is i + n or k, it does.

Size is irrelevant, and angle and growth factor can compensate for
one another in the same way that angle and sidelength compensate
in drawing circles. Thus, the appropriate parameter is something like
growth per angle. But since growth factors multiply, rather than adding
as distance does, the answer is the ath root of f, where a is angle and
f is growth factor. (Making a GROWs of that amount is the same as one
GROW of f.)

Section 2.4

1. The sidelength of the inscribed POLY is cos(A/2) times that of the
outer POLY.

TO POLYNEST (SIZE, ANGLE, LEVEL, TOTALTURN)

IF LEVEL = O THEN RETURN

FORWARD SIZE/2

SUBPOLYNEST (SIZE, ANGLE, LEVEL)

FORWARD SIZE/2

RIGHT ANGLE

TOTALTIJRN - ANGLE

REPEAT

FORWARD SIZE

RIGHT ANGLE

TOTALTURN 4- TOTALTURN + ANGLE

UNTIL REMAINDER(TOTALTURN, 360) = o

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

448 Answers: Chapter 2

TO SUBPOLYNEST (SIZE, ANGLE, LEVEL)

RIGHT ANGLE/2

POLYNEST (SIZE * COS(ANGLE/2), ANGLE, LEVEL - 1, 0)

LEFT ANGLE/2

2. Each level curve has the length of the previous level, so total length
for level n is 3 X SIZE X For area, at each level we add the area of
three new triangles, each the area of a previous bigger triangle. Hence,
if A is the area of an equilateral triangle of side s, the new area added
at each level is A/3'. So the total area is

Ax[1+++...+()'}=3Ax
2

Observe that, as the number of levels increases, the total length of the
curve tends toward infinity, while the area of the curve approaches 3A/2.

4. If 1(n) is the length of the level-n curve (SIDE = 1), then 1(n) =
3 + 4f(n - 1). Thus,

f(n)==3x(1+4+16+.+41)=4-1.

8. The following procedure draws the recursive "one-fourth" of the
curve. There are two different line lengths: S and DIAG = S/v".

TO ONE.SIDE (S, DIAG, LEVEL)

IF LEVEL = O THEN RETURN

ONE.SIDE (LEVEL - 1)

RIGHT 45

FORWARD DIAG

RIGHT 45

ONE.SIDE (LEVEL - 1)

LEFT 90

FORWARD S

LEFT 90

ONE.SIDE (LEVEL - 1)

RIGHT 45

FORWARD DIAG

RIGHT 45

ONE.SIDE (LEVEL - 1)

Then the curve is made of four pieces, each piece is given as above,
together with an extra DIAG piece:

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Answers: Chapter 3 449

TO 51ER? (S, LEVEL)

DIAG - S/SQRT(2)

REPEAT 4

ONE.SIDE (S. DIAG, LEVEL)

RIGHT 45

FORWARD DIAG

RIGHT 45

Chapter 3

Section 3.1

Starting from the same spot for a y and w displacement, y - w is the
displacement that takes you from (the tip of) w to (the tip of) y.

Consider the vector statement of closure, vo+2v1+ . +nv_i = O,
where y are rotated versions of y0. Subtracting vo+vi+ +vn-i = O
gives y1 + 2v2 + + (n - 1)vi. Now rotate the result, y -+
and subtract from the original to give nv_1 = O, which is impossible
unless y0 = O.

The theorem is the same, with q terms in the sum.

6. ANGLE1=17, ANGLE21 gives 45° (eightfold) symmetry; ANGLE1=18,

ANGLE2=2 gives 90° (fourfold) symmetry; ANGLE128, ANGLE2=3 gives
216° (fivefold) symmetry; ANGLE1=1O1, ANGLE2=1 gives 18° (twentyfold)
symmetry; ANGLE1=102, ANGLE2=2 gives 36° (tenfold) symmetry.

9. If the angles of the MULTIPOLY are A1,A2,A3, . .. ,A, and A1 is the
smallest of them, then the symmetry angle of the spirograph is the least
common multiple of the set

360 360 360

A3 Ak1
A1 Aj A1

The least common multiple of a set a1, a2, a3,.. . , ak
the LCM of pairs of numbers as

LCM(aj, LCM(a2, LCM(a3, .. . , LCM(ak_l, ak)))).

can be found using

10. Taking the 1, n, n2,... case and using the answer to exercise 9 above
gives the least common multiple of 360/(n - 1), 360/(n2 - 1),..., which

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

450 Ajiswers: Chapter 3

is 360/(n 1). A clock has two hands, one of which moves 12 times as
fast as the other. By the above analysis this gives elevenfold symmetry
(since the hands move continuously, it is exact symmetry). This means
that there are only eleven possible orientations for inserting a working
mechanism into a clockface; that is, for which it is possible to set the
clock with both hands pointing together at 12.

13. DUOPOLYs are always approximately bilaterally symmetric, in the
sense that the associated spirograph is always bilaterally symmetric.
But visually, approximate bilateral symmetry happens under different
circumstances than approximate rotational symmetry. One situation
that ensures exact bilateral symmetry is when the angles are negatives
of each other and the sidelengths are the same. In this case, the axis of
symmetry is perpendicular to the initial heading.

Since the spirolateral is closed, the sides form a collection of vectors
y that sums to zero. By the theorem cited this must be a multiple of V;
that is, each y appears the same number of times. But that's precisely
what it means to be regular.

The slot process will distribute the numbers i thru MAX among n slots
so that the numbers in each slot sum to the same amount. Therefore,
the sum of all the numbers from 1 through MAX must be divisible by n.

And the sum of the numbers from i through MAX is MAX X (MAX + 1)/2.

In the slot process, if a number k is assigned to slot i, then k + i

gets assigned to either i + i or i - i (mod n). Therefore, the claim made
in the hint is true: Either all odd numbers get assigned to odd numbered
slots and all even numbers to even numbered slots, or vice versa. But all
slots must have the same sum, and there are the same number of odd
and even slots. So the sum of the odd numbers from 1 to n would have
to equal the sum of the even numbers from i to n, which it does not.

24. Rewrite the congruence as

X (360p/q) = 360p/q + (integer) X 360.

Now divide both sides of the equation by 360 and multiply by q.

28. By Fermat's Little Theorem (section 1.4, exercise 7), we have 21
i (mod p). Hence, the order of 2 modulo p is at most pl. That means
that there are at most pi vectors in the Gospel basic loop. But accord-
ing to the theorem cited in exercise 17 you must use all p vectors y in or-
der to achieve a sum of O.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Answers: Chapter 3 451

Section 3.2

2. If x and y are the coordinates of V, then the vector equation RA(V) =
V can be be rewritten in coordinates as the pair of equations

z = xcosAysinA,
y = xsinA+ycosA.

Multiplying the first equation by cos A and the second by sin A, adding,
and using the fact that sin2 + cos2 1 gives

xcosA+ysinA= z.

Together with the first equation, this implies that y sin A = 0, and hence
z cosA = z. So either z andy are both O or else sinA = 0 and cosA =
1; that is, either V = O or A = 0 (mod 360).

3. This is just the coordinate form of the vector equation given by the
POLY closing theorem, where A = 360/n and y is the vector [1 0].

4. If A is the heading of y and L is the length, then

L V2 + v2,
H = TOWARDS(v, vi).

(See exercise 10 of section 2.1 for the TOWARDS function.) Conversely,

v = LcosH,
v = LsinH.

5. The condition is v1v22 VlyV2x.

6. Let D = V1xV22 - Then a = v22/D, b = v1/D, c =
v2/D, and d = vi/D.
'T. The geometric condition is that y1 and y2 must be perpendicular and
of the same length. The algebraic condition is

v1x = v2y,
Vly

8. The net displacement from the constant center is RkB(r)+R_kp(rV).
Since these vectors are rotating in opposite directions, we can always
choose to start looking at them when they are lined up. If t = O
corresponds to the lined-up position, the subsequent displacements are
given

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

452 Answers: Chapter 3

by RtB(r) + R_tn(Er), where r has their common lined-up direction
and the length of r. E is the ratio of the length of r to r, namely
C/A. Now choose coordinates so that x points along r, and the DUOPOLY
becomes the set of Cartesian points

(r cos Bt + rE cos Bt, r sin Bt + rE sin(Bt))

= r((1 + E) cos Bt, (1 - E) sin Bt).

This set of points satisfies the equation

X2 Y _2
(1+ E)2 + (lE)2 r,
and therefore is an ellipse as advertised. Note how choosing the t = O
time and the coordinate system with origin at c with x pointing toward
r simplifies calculation and puts the answer in easily recognizable form.

Section 3.5

2. Proj(v,w) = y . w/Iwi. In coordinates, this is A divided by B where

A = y w = vw + vw +

B = /w2 + w2 + w2.

Proj(v, w) = Ivi cosA. But Proj(v, w) y . w/IwI also; thus the
result follows.

Simply compute the length of t as

ItI = t = y + w (y + w). (y + w) = v12 + 1w12 + y . w.

Now use the formula for dot product given in the preceding problem,
together with the fact that the angle A is 1800 minus the angle used in
that problem.

7. The proof of the POLY closing theorem in subsection 1.2.2 boils down
to the fact that if the turtle's path were not closed the turtle would
wander off to infinity in two directions simultaneously, which is impos-
sible. More precisely, we found that the turtle would have to wander
off to infinity along some line L, and then that it would have to wander
off to infinity along a rotated version of L. But, in three dimensions, L
and L rotated can be the same line! In fact, while a nonzero rotation in
the plane cannot leave any line invariant, any nonzero rotation in three
dimensions will always leave some line invariant (namely, the axis

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Answers: Chapter 4 453

of the rotation). So there is no contradiction. Moreover, this tells us how
to find the line L: It is the axis of the "net rotation" of the three-
dimensional POLY step. In fact, all the points of the POLY lie on a helix
that winds around L.

Chapter 4

Section 4.1

For one crossing point the possible values are 0, +720; for two
crossing points, +360, +1080; for three crossing points, +1440, +720, 0.

The direction in which the turtle travels defines a "positive" direction
along the curve. At the crossing point we can single out two directions:
Let D1 be the positive direction through the crossing point of the piece
of arc the turtle traveled first, and let D2 be the positive direction of the
piece of arc traveled second. Think about rotating D1 until it lines up
with D2. Define the crossing point to be left-handed or right-handed,
depending on whether the rotation from D1 to D2 is counterclockwise or
clockwise. (In rotating from D1 to D2 we take the "short way around":
We rotate so that D1 does not cross over the other two arcs coming
in to the crossing point.) To make this unambiguous you can, for
example, start tracing around the curve from a section of the curve that
is reachable from the outside (that is, not on an inside loop).

With crossing direction defined as above, each right-handed crossing
will contribute 360° to total turning and each left-handed crossing will
contribute 360°. The extra piece of information is the direction the
turtle travels around the "whole curve." It can be determined, for
example, by looking at the leftmost point on the curve and seeing
whether positive direction on the curve is pointing up or down at that
point. So let LH be the number of left-hand crossings and let RH be the
number of right-hand crossings. Let X equal i if the positive direction
at the leftmost point on the curve is down and 1 if the direction is up.
Then the total turning is 360(RH LH + X).

Section 4.3

1. Count turning left as positive and turning right as negative. If the
total turning around the curve is 360°, then the turtle's left leg lies in
the inner region. If the total turning is 360°, the turtle's right leg lies
in the inner region.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

454 Answers: Chapter 4

If there are crossing points, then there are more "local configurations"
than the ones shown in figure 4.20. For example, the northeast corner
could be a crossing point and the collapsing process would get stuck.

On the plane, any succession of northeast corners, each one blocking
the previous one, must terminate because the curve only has a finite
number of vertices. But on a surface like the torus, a finite sequence of
corners could ioop around the torus to come back on itself. For a ioop
like this, the collapsing process would get stuck.

The set of numbers specified in the hint is finite (fewer than n2, where
n is the number of segments) and does not contain zero, so it must have
a minimum member which can be used for D. (If you want extra safety,
you can always divide by, say, 3.)

The secret is to invent a process that can be carried out locally (within
a grid square) yet does not violate any global constraints:

Take a square grid of sidelength equal to the safety zone in exercise 5.
Call this the gross grid.

Now move the grid a bit if necessary to make sure that no line has
a heading that is a multiple of 45°, that no edge in the grid is divided
exactly in half by a segment of the path, and that no vertex lies on the
grid. (These conditions ensure no ambiguity in what follows.)

Consider the two points on the boundary of each square where the
path enters and exits and find the smallest distance, s, between these
(along the periphery). Add lines to the gross grid to make a finer grid
of size less than s.

Repeat the second step as necessary.

Except in regions of the grid within vertex-containing gross squares,
deform the path to the boundary of the grid squares so that the path
enters and leaves the square at the corner of the square closest to its
undeformed entry or leaving point and so that the path follows the
shortest path along the boundary of the square from entry corner to
exit corner.

Within the remaining gross-grid squares that contain only one vertex
and two segments of path (there is now at least one complete grid-square
edge between entry and exit points), use any deforming process that links
up properly to the entry and exit points. (For example, simply connect
the point of entry to the point of exit along the shortest path along the
boundary of the gross grid.)

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Answers: Chapter 5 455

Section 4.4

1. On any run along a particular northward section, the turtle's state
must be the same. That means it has a unique future path from there
that cannot separate (and come back together).

Chapter 5

Section 5.1

We can establish a convention: If the turtle counts left turns as
positive, then the inside of the region is the region to the turtle's left; if
the turtle counts right turning as positive, then the inside is the region
to the right. Observe how this works out consistently with the formula
relating excess to area. If the total turning (left turns counted positive)
around a curve is T, then the excess will be 2ir - T and the area of the
region must be (2ir - T)r2. If right-hand turning is counted as positive,
then the total turning of the same walk will be measured as T, and
hence the excess will be 2ir + T and the area r2(21r + T). Thus, the
two areas sum to 4irr2, which is the area of the whole sphere. This is
consistent because, by the convention above, we were considering in the
two cases areas of the two complementary regions of the sphere which
the path creates.

Each interior angle is ir minus the corresponding exterior angle, so the
sum of the interior angles for the triangle is 3ir minus the total turning.
Putting this together with the area formula implies that the sum of the
interior angles is equal to ir plus AIr2, where A is the area of the triangle
and r is the radius of the sphere.

6. The problem is that the "change of heading" of anything, such as
the "net change of pointer heading" which might be used to determine
excess, is only defined modulo 360. However, "total turning" watches
the whole process rather than net change of state and can distinguish
multiples of 360. That is why the (2ir - total turning) form of excess
is unambiguous. In the same way, watching the turtle-carrying-pointer
process can avoid the ambiguity. One can see the difference between
circle and equator (0 and 2ir excess) in that during the latter the turtle's
line of sight never crosses over the pointer's direction. In general, the
particular multiple of 360 can be determined from the number of times
the turtle's sight crosses over pointer direction from left to right minus
the number of right-to-left crossings.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

456 Answers: Chapter 5

'T. This important relationship reduces turning to a question of distances.
Consider a two-wheeled turtle that turns by holding one wheel still while
continuing forward on the other. During such a pivot, the extra distance
traveled by the moving wheel is just the arc of a circle of radius d (=
distance between wheels) having measure O (= turning of turtle); the
extra distance is d X O. For a bunch of turns the total extra distance of
one wheel over the other will bed X 01+dX O2+ = d(01+02+..)
d X (total turning). The answer to the final question is yes.

8. Using the hint, the excess distance of one lane over the other is
(width of track) X (total turning). For a simple closed track TT 2ir;

for a figure-eight TT = O. These are false in general for a banked track.

Section 5.2

The path on the cylinder does not bound a topological disk, so there
is no reason for the excess around the path to be the total curvature of
the interior.

Locally, all such surfaces are rolled sheets of paper. Now a roll can be
thought of as a bunch of small-angled folds along lines (or line segments,
if the line goes off the sheet), and this preserves the nonintersecting
property of parallel lines or segments immediately on either side of the
fold. In general this suggests that any surface that can be decomposed
into a (necessarily infinite) collection of straight lines or segments that
don't meet (these are the fold lines) is fiat. Such a surface is called a
ruJed surface. If you don't allow kinks such as would arise if two folds
meet at a point, any fiat surface is ruled.

The outside (longest) path and the inside (shortest) path are both
turtle lines. The path along the top is not. You can see this by using
the same reasoning we used to decide that the equator of a sphere is the
only line of latitude that can be a turtle line: Compare the length of the
paths trod by the turtle's left and right legs.

Suppose that P and Q are two different subdivisions of the surface
into .topological disks. We have to prove that the sum of the excesses
over the boundaries of P is equal to the corresponding sum for Q. So
make an even finer subdivision R of the surface into topological disks
such that each piece in P is a sum of pieces in R, so that each piece of
Q is a sum of pieces in R, and so that in forming pieces of P or Q out
of pieces of R we can use the "join two pieces at a time along a single

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Answers: Chapter 5 457

arc" method (which is what is needed to make the additivity theorem
true). All of this can be done if we are willing to make the pieces of
R small enough. Now we can apply the additivity theorem to conclude
that, for each piece of P, the excess around the boundary is equal to
the sum of the excess of the pieces of R that make up that piece of P.
Therefore, the total sum of all the excesses of all the pieces of P is equal
to the total sum of all the excesses of all the pieces of R. By the same
reasoning, the sum of the excesses of the pieces of Q is also equal to the
sum of the excesses of the pieces of R, and hence equal to the sum for
P.

A tin can has curvature along its rim (see subsection 5.3.2).

A radial circle about a general point on a cone (not the tip) is not
a turtle circle if the tip of the cone is interior to it. On spheres, radial
circles are the same as turtle circles.

A football has an equator (equidistant from the football's "points")
which divides it into two topological disks of excess 2ir each.

The total curvature of the cube is 4ir. The curvature density is zero
everywhere except at the vertices. There is ir/2 curvature concentrated
at each vertex.

Scaling the surface doesn't change any angles, and so doesn't change
the excess of any path. Therefore, the total curvature K is unchanged,
since this can be computed using excess. The area of the surface changes
by 2, and, since curvature density k is equal to excess per unit area, k
must be multiplied by l/2.

A smaller scale model cone can be thought of as just part of the
original cone. But since it contains all the curvature of the original, the
remaining part of the cone is left with no curvature. Continuing the
shrinkage, no part of the cone, except the tip, can have any curvature.

From exercise 6 of section 5.1,

TT
Excess distance

- Width of turtle
= (2/100) X (length of walk).

Walking a circle on a plane has TT = 2ir; length of walk = lOOir. A
25-turtle-step walk makes 1/2 radian turning; Excess = 2ir - . For a
400-step walk the excess is negative, (8 - 27r).

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

458 Answers: Chapter 5

If you fill in the holes you have a topological disk whose total
curvature is the excess around its boundary, E(B). Cutting out the holes
removes topological disks with total curvature given by the excesses
around their boundaries, E(H1), E(H2),..., leaving E(B) - E(H1) -
E(H2) - as the total curvature of the surface with holes.

Except for the tip, which has concentrated positive curvature, all
curvature is concentrated along sews. Moving along the edge of one of
the pieces, a turtle can tell positive curvature from negative according
to whether it has to turn toward or away from the interior of the piece.
Accordingly, there is positive curvature where an edge is locally convex
and negative where an edge is locally concave.

18. 11 is precisely the angle excess around the boundary of A.

Section 5.3

Make a cut that goes through the tip.

The surface has the same total curvature as it would if the handle
were not knotted. You can see this by chopping the knotted handle in
two, untying the knot without deforming near the chop, and regluing.

If we allow extrinsic information, a simple answer can be given
as follows: Consider a turtle walking along a line of symmetry of the
dent (radially). The change in steepness of the grade the turtle is
walking along correlates directly with curvature. Getting steeper means
negative curvature, constant steepness is zero, and getting less steep
means positive.

Certainly Take a cylinder and bend it around on itself without de-
forming near the boundary, then glue the two boundary circles together
to make a torus.

The measures are subtracted since in the rectangle argument the
turtle would be traversing the arc in opposite directions on opposite
sides. If two turtles traverse the arc in the same direction on opposite
sides, one of them will get the negative of the amount of turning which
needs to be added. To avoid deciding which to subtract from which,
add the measures, but take turning to be positive if it is toward the arc
(that is, if the arc is on the turtle's left, left turns count positive) and
negative otherwise.

The proof assumed that the turtle can trek the same path (or an
equivalent one) in traversing the common arc for measuring each path.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Answers: Chapter 5 459

Thus, the excess-additivity theorem will work provided the turning along
the common arc is well-defined; that is, provided it is the same im-
mediately on either side of the arc (where the turtles must tread when
measuring the pieces individually).

The surface is topologically a sphere, and hence it has total curvature
4ir. There are twelve cubelike vertices, each with concentrated curvature
ir/2. The remaining four vertices, where the two cubes are joined, each
have concentrated curvature ir/2.

If we require the torus to be "smooth" (having no abrupt changes
in curvature), then the answer is yes. Since the torus has zero total
curvature, if there is a region of positive curvature density there must
also be a region of negative curvature density to balance this out. And
if the curvature varies smoothly, there must be a place of zero curvature
density on any path between the regions. But if we allow the curvature
to vary abruptly (for example, if we make a torus out of pieces which
are joined together so as to produce concentrated curvature), then this
is no longer true. For example, rather than forming a torus by pasting
together two cylinders as in figure 5.24, form the torus out of two flanged
handles. We can choose each handle to have negative curvature density
everywhere. So the resulting torus will have negative curvature density
everywhere except along the arcs where the, handles meet, which will
have concentrated (positive) curvature. See exercise lo.

Remove a flat disk from each sphere and connect the holes with
a handle. The result is topologically equivalent to a single sphere.
Equating total curvature and using the fact that the disks are flat shows
that the total curvature of a handle must be minus the total curvature
of a sphere.

lo. The resulting surface is topologically equivalent to a single handle,
and hence it has total curvature 4ir. Therefore, there must be 4ir of
curvature concentrated along the circle.

12. We give a proof which follows the outline in the hint: Choose any
point p that does not lie on the surface. Since the surface does not run
off to infinity, there is some point on the surface that is farthest from
p. Call this point q. We claim that the surface has positive curvature
density at q. To see this, imagine rotating both p and the surface so
that q lies directly above p. Then, near q, the surface must look like a
hill with q as the highest point. According to the prescription given in
exercise 9 of section 5.2, hills indicate positive curvature density.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

480 Answers: Chapter 6

13. We know from the previous exercise that there is some point on
the surface where the curvature density is positive. But there are no
points of negative curvature density to cancel this positive contribution.
Therefore, the total curvature must be strictly positive. At the same
time, we know that the surface must be topologically equivalent to a
sphere with some number of handles attached. But even one handle
would be enough to cancel out the total curvature of the sphere, and
more than one handle would give negative total curvature. So the only
possibility is that the surface is a sphere with zero handles attached.

15. Examples like this violate the intuitive sense of what faces, edges,
and vertices should be. They also cause problems in stating certain
theorems (see the discussion of Euler characteristic in chapter 8). If you
insist that faces be topological disks bounded by simple topological arcs
(no intersections) which are in turn bounded by points (vertices), and
faces only meet along a series of arcs, that excludes viewing this object
as a Platonic solid.

17. 4ir. The proof that adding a handle reduces curvature by 4ir
works whenever you can add the handle without deforming any part
of the original surface near a boundary. This is a plane with a handle
attached.

Chapter 6

Section 6.1

1. The vanishing of the denominator means that the two line segments
are parallel. Thus, CHECK.EDGE should look at the denominator before
computing MU and return "NO INTERSECTION" if it is zero. Observe that
the denominators in the expressions for LAMBDA and MU are the same
except for sign; one will vanish if and only if the other one does too. So
only one zero check is necessary.

5. Each of the two line segments is contained in an infinite line. Values
of X and outside of the 0-1 range mean that the lines intersect at
points outside of the designated segments. Negative values correspond
to points on the line before the initial point of the segment. Values
greater than 1 correspond to points on the line after the endpoint of the
segment.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Answers: Chapter 7 481

Chapter 7

2. Because of the symmetry in the arguments, POLY (a, /3) cannot have
more vertices than POLY (/3, a), just as the reverse cannot be so. The
only remaining possibility is equal number of vertices.

They have the same O but not the same axis of rotation. Note
that the time-reversed action, RIGHT /3, BACK a, has the same axis as
FORWARD a, LEFT ¡3. Now perform the following operation on the entire
sphere-plus-axes system: Rotate the FORWARD axis 900 until it coincides
with the original LEFT axis. Now reflect the whole thing in the plane
of the original FORWARD and LEFT axes. This action has the net effect
of turning RIGHT /3, BACK a into FORWARD /3, LEFT a and carrying the
axis of the former (also the axis of FORWARD a, LEFT /3) into the axis of
FORWARD /3, LEFT a.

For stars the formula should be n X 2ir - Area/R2, where n is
the rotation number and the area is given as follows: Imagine tying a
rubber band to the turtle and to a pivot at the center of the POLY figure.
The appropriate area is what is swept out by this rubber band as the
turtle draws the POLY. Thus, for a 5-pointed star the area of the central
pentagon is counted twice.

T. Radius of curvature (1/R) X cot(r/R); TT = /(21r)2 - (dR)2.

9. After deriving the formula in radians, just change units by multiplying
every angle in the formula by the appropriate conversion factor. But
then you can cancel that conversion factor out of the formula. (This is
because all terms in the formula are angles raised to the same power.
You could not cancel the factors if the formula included other terms,
say, angles cubed or constants.)

n = 2ir/G = 2ir//a2 + b2; TT = nu = 2ir/3//a2 + b2; c =
naR = 27raR/\/a2 + b2. To show consistency, check (TT)2+(c/R)2
(2ir)2 and compare with exercise T.

Consider two vertices coinciding at the north pole and their cor-
responding equators. We are going to move one vertex away from the
other to make them the ends of one side of the original triangle. As
one vertex moves away from the north pole a distance a, its correspond-
ing equator tilts an angle a from its initial plane, and hence the tilting
equator makes an angle a with the equator of the other vertex. That
angle between tilting equators is one angle in the polar triangle. The

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

462 Answers: Chapter 8

other two angles of the polar triangle match the measures of the other
two sides of the original triangle in the same way.

Chapter 8

Section 8.1

You need n squares to make an n-holed torus. If you have S squares
and identify edges so that there is only one distinct vertex on the surface,
then that vertex will have total turning 2irS and hence excess 21r(1 - S).
This is the most negative curvature you can produce with S squares.
(Verify that.) But an n-holed torus has total curvature 2ir(1 - n), so S
must be at least n. Conversely, if you do identify the edges of n squares
so that there is only one vertex, you will get an n-holed torus. (This
assumes that the identifications preserve orientation; see section 8.2.)

Consider a polygon with sides labeled counterclockwise consecutively
1,2,3,...,4nandidentifiedlto3,2to4,5to7,6to8,andsoon. (The
most counterclockwise end of i is identified with the most clockwise end
of 3, etc.) By following a path around "vertices" you will find one real
vertex with a total turning of 27r(2n - i), for an excess of 4ir(1 - n).

11. Surprisingly, the answer is no. Near a vertex of negative curvature,
the "shortest distance" may force the turtle to walk through a vertex.
The resulting path is not a turtle line. (It is, however, two turtle lines
joined.)

If we use the second method suggested in the hint on any part of
the glued segment, except one including an endpoint, there will be no
turning on either side (since the sides are straight); hence, O - O = O
curvature.

The line between the pieces can be modeled as follows: It really
consists of two parallel lines infinitesimally separated, with each have
the same (infinite) curvature concentrated on them, but of opposite
sign. Thus, if you measure curvature of the "edge" by paths crossing
perpendicular to the edge, the + and the - curvature cancel. If you
cut at an angle you will include different lengths of + and - and
wind up seeing a net curvature. This problem taxed our ingenuity at
understanding it in terms of curvature. We developed the above model
by first sticking a trapezoid between long and short identified segments
(to match each), then making a wedge map (chapter 9) of this, and
imagining shrinking the height of the trapezoid to zero.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Answers: Chapter 8 463

Section 8.2

1. We use a more compact notation for identifications; abc denotes that
side a is glued to side b with transition parity having sign c. Spheres:
112 + 34+], [14 + 23+1. Projective planes: [12 - 34+], [12 + 3 -b
(14 - 23 +1, [14 + 23 -J, [13 - 24 -1. Klein bottles: [12 - 34 -J,
[14 - 23 -J, [13 + 24 -1 [13 - 24 +]. Torus: [13 + 24 +1. Some
of these, while topologically the same, are geometrically distinguishable
(for example, the first and last projective planes).

2. Simply count total turning around the vertices as in subsection 8.1.4.
You'll find that the Klein bottle has only one vertex, with total turning
2ir, and hence excess O. Thus, the bottle is fiat at the vertex as well as
everywhere else.

3. The projective plane has two vertices, each with total turning ir,
and hence excess ir. Thus, the total curvature is 2ir. You should verify
that any straight line through the center of the square in figure 8.22
represents a closed path on the projective plane which confuses left and
right.

Let "left" mean counterclockwise as viewed from above in the stand-
ard atlas layout of separate faces. Within each face the turtle can never
suddenly change orientation. Can crossing an edge confuse the global
definition? Consider a turtle leaving a face (its left foreleg will be point-
ing counterclockwise around the boundary). An orientation-preserving
gluing finds the turtle coming onto a (possibly) new face with its left
foreleg pointing clockwise around the boundary. But since the turtle is
now facing toward the center rather than away, this is no contradiction
of the global definition.

A torus.

8. Only one closed connected surface can be made with two squares but
not with oneit is nonorientable, with total curvature 2ir.

Section 8.3

2. A net on a handle has x = O, but removing two holes from the
surface in order to glue the handle in place reduces F by 2. Thus adding
a handle decreases the Euler characteristic by 2.

4. The problem is that removing the edge destroys the property of being
a net; it is not an elementary operation. In the second net, region ifi is
no longer a topological disk.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

464 Answers: Chapter 9

6. Since the edges of the faces are identified in pairs, the total number
of edges in the surface will be nF/2. Hence, the Euler characteristic
V - E + F will be equal to V + F(1 - n/2).

T. V = 1 is possible, giving a minimum of 2ir(1 - F). If only connected
surfaces are allowed, the maximum is 4ir. Otherwise, 4irF is possible.

8. A face with 2n sides has a maximum of 4ir and minimum of 4ir-2irn.

Any proof that K = 2ir will need to use the fact that a small neigh-
borhood of any point on the surface is a topological disk. (Otherwise,
curvature will not even be well defined.) Any neighborhood of the
common vertex in the double cube looks like two cones glued at their
verticeswhich is not a topological disk.

Adding a crosscap decreases the total curvature by 2'ir and always
makes the surface unorientable. A sphere with a crosscap added is a
projective plane. Adding two crosscaps gives a Klein bottle.

x = F(1 - S(- +)). You will find a solution for each Platonic
solid pius a class of solutions T = 2, F = 2, S = anything. These last
correspond to two identical polygons glued along their boundary, and
contain no volume. In ordinary three-dimensional space the glued faces
must coincide entirely when the gluing is performed.

Xlocal = O implies S(- +) = 1. Solutions are T 3, S = 6;
T == 4, S = 4; and T= 6, S = 3.

To see that S = 5 is impossible, note that in trying to draw it you
always wind up with a "complete" net which cannot be added to in any
way. This particular "complete" net can be formed by stretching open
one face of a dodecahedrori so that you can lay down the whole net on
a plane. To see that T = 3, S = 8 is possible, see p.235 of The World
of M. C. Escher (New York: Abrams, 1972). (Look at the picture and
imagine stretching the edges of the disk out to cover the whole plane.)

Chapter 9

Section 9.1

If s and c denote the sine and cosine of nR, GAPRATIO = r/Rs - i
and TURNING.PER.ANGLE = 1c.

Equation (3) remains true, but with CENTR.AL.ANGLE computed in
degrees. TURNING . PER. ANGLE is given by 1 - cos(180n/irR), and one

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Answers: Chapter 9 465

possible formula for CENTRAL .ANGLE is 180/ir times that given in the
text. Take R = 180/ir to get distance to be the same as angle in degrees.

4. Demon turning and leaping are opposite to the direction they were
in before. Now wedges overlap, but the simulation will still work if you
make the necessary backward leaps and negative demon turning.

Because of leaping, the turtle's heading doesn't point tangent to the
path. As the gap ratio changes, this difference in angle between heading
and tangent to path changes; paths still look somewhat bent on the map.

Imagine a turtle with one wheel at r and one at r + r. The formula
pointed out in the hint gives (C(r + r) - C(r))/r for total turning.
In the limit of small turtle this is dC/dr.

LEAP = GAPRATIO X (x REALWALK) X x. In x,y coordinates,
LEAP = (GAPRATIO X REALWALKX, 0). GAPRATID = (2irR - C(r))/C(r);
DEMON. TURNING x X TURNING . PER. MAPX, where x is the change
in map x coordinate in the walk. TURNING.PER.MAPX = (1/R)sin(y/R),

where y is the y coordinate on the map.

14. Any reasonable definition for an equator will provide for two of them
which are the inside and outside boundary circles if you cut a torus like a
bagel. (In addition, you might allow an infinite class which are slices in a
perpendicular plane; however, that claim made in the problem is false for
that class.) To prove the claim, run two turtles forward and backward
simultaneously from the center equator of figure 9.7 until they get to the
other equator, which is the edge of the map. The two pieces together are
a map image of a complete walk from the second equator back to itself.
Because of the symmetry of the wedge map, demon turning above and
below the central equator must be the same in magnitude but opposite
in sign, thus canceling out on the whole path.

Section 9.2

It means nothing at all. How fast you draw a map changes nothing
about the world.

The speed is the ratio of distance traveled per time,

y = JH2 + H2/H.
In components, y = (H/H,H/H).

4. A soap bubble "wants to shrink" to the minimum surface area subject
to the constraint of containing its fixed volume of air. A large bubble

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

466 Answers: Chapter 9

will find it attractive to enclose the whole region, as it can hold all its air,
but with a reduced surface area. Thus it will be "pulled into the region"
by its own surface tension. Small bubbles will generally be attracted
toward regions of highest positive curvature, where more volume will be
contained with a given surface area. You can think about this correlation
of curvature with the relation of surface area and volume by analogy with
two dimensions. There, the area (analog of volume) contained within a
circle of a given circumference (analog of surface) around the tip of a
cone gets bigger as the curvature of the cone increases.

5. You can distinguish the "temperature world" from curved geometry
only because different materials generally expand unequally in response
to heat. The wedge map of the hill could not be simulated by a tem-
perature world, as the local stretch depends on direction. Circles are
stretched, but radial lines are not, and temperature doesn't have such
directionality. On the other hand, there is a plane-like temperature
world that is a perfect sphere (except for one point). This is the stereo-
graphic projection (figure 7.14), which, it turns out, does locally expand
the same in any direction as in any other. The uniform-heating story
(that if everything expands uniformly, rulers included, the world is to-
tally indistinguishable from what it was before) has important implica-
tions: Intrinsic geometry is the effect of inhomogeneity of "lengths,"
changes from one region to a neighboring one. Absolute length, like
absolute temperature, is not determinable in any geometric way. Only
relative expansion produces intrinsically observable effects.

7. Even before the board gets a significant area inside the region (and
suffers problems like the side-on attack), the first part of the board that
enters the region will be "bent" concave inward. This will conflict with
the fiat configuration maintained by the rest of the board.

Section 9.3

100 miles per hour corresponds to 1.5 X i07 radians away from
vertical on the map.

Sam is older by GAPR.ATIO times John's aging. If the world were such
that GAPRATIO were huge (it isn't), you could visit the distant future.
But you couldn't return to the present.

A small red shift (or, more accurately, a small change in red shift)
means a small deflection angle per map time unit. But even a small
deflection angle ß rotates a vector representing a time change of t (on a

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Answers: Chapter 9 467

clock) to have a spatial component ßct. This follows from the conven-
tion that 45° is the speed of light and from our description of Lorentz
rotations using that convention. The moral is that a small bit of time
is worth a whole lot of space.

LROTATEp(x, t) = (x + ßt, t + ßx). If x = +t (the speed of light)
it is easy to check that the rotated vector is just a scaled version of
the origina.l and hence is invariant in direction. In the first quadrant
and time-liket, x > O and t > xthe above formula shows that the
x component increases more than the t; that is, the vector is rotated
clockwise. If z > t (spacelike), the t component increases more than z
(counterclockwise rotation). Other cases follow similar analyses.

Take the case t > z > O, as above. The difference in the t and
z components of the rotated vector is (t - x)(l - /3), which is greater
than zero provided /3 < 1. Thus, this timelike vector remains timelike,
t > z, for any small rotation and sequence of rotations. Other cases
follow with similar analyses.

Tachyons' paths will still be bent by spatial curvature the same as any-
thing else. But since their heading is spacelike, they get velocity deflected
away (repelled) by spacetime curvature. Which effect (attraction or
repulsion) predominates is a matter for calculation in particular cir-
cumstances. Could it be that the second effect explains why no tachyons
have been observed on earth (they've all been blown away by gravity)?

On a sphere, there is no way of justifying one turtle's point of view
over another. But in a curved world in which geometry is fiat far away
from the gravitating center, all turtles that stay far from the curved
region will agree on who is deflected how much.

Gravity (including spatial bending) gets weaker the farther out you
go. But any orbit has increased spatial curvature as the orbiting object
approaches its farthest point and starts "falling back" toward the sun.
Thus, if an orbit is the least bit noncircular, spatial bending could not
make it come closer to the sun again after starting to move away.

One can construct a straight line by piling up a stack of flat poker
chips. Constant thickness at the edge of the disk replaces the two-
dimensional criterion of constant step length at the edges of the turtle.
A straight wire is one that can be decomposed into such flat disks. Most
physicists believe that all the laws of nature, like those governing the
propagation of light, are local in nature. Anything can respond only to
what is nearby. If this is true (all current theories of light are local) and

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

468 Answers: Chapter 9

the experimental observation that light goes locally straight is precise,
then we would be certain that light anywhere (globally) follows turtle
lines.

Look at the world line of a message from origin to receipt on a
wedge map. As long as the geometry and the message mechanism don't
change in time (it would be silly to watch for the first tick and listen
for the next), the delay is some constant map time interval. Thus, the
receipts of messages are just shifted up the map by a constant delay
from transmissions, and the interval between receipts is independent of
delay. This provides a red-shift measurement identical to that of the
insert- and-remove-watch experiment.

Send two laser pulses out simultaneously from the center of a board
toward each end. The pulses reaching receivers at the ends of the board
are two simultaneous events; that is, they are purely spacelike. Observed
from a moving frame of reference, Lorentz rotations predict a rotation
in spacetime (of the vector pointing from one event to the other) which
will pick up a time component. Thus, one of the events (the one at the
end in the direction of observer motion) will have been observed later.
This change in simultaneity is an important effect of Special Relativity.

In x, y, t coordinates consider a lightlike vector (0, 1, 1). Now make
a Lorentz rotation in the x, t plane (which leaves the y coordinate in-
variant); x becomes x + fit and t becomes t + fix. The resulting heading
(/3, 1, 1 +ß) has a different spatial direction (/3, 1) from the original (0, 1).
It has deflected.

You can always make particles travel in nonstraight lines by apply-
ing forces, just as a normal turtle's turn commands make it travel in
nonstraight lines. In particular, a particle at rest with respect to the
global criterion of distance from the center of the earth is actually being
deflected away from its natural, locally straight path (natural path =
falling). In demon terms, your hand is supplying a force (turning) which
is canceling out demon turning to produce a map-straight line. In fact,
the curvature of the deflected path you are causing (turning / length
of world line) is proportional to the force you need apply. The propor-
tionality constant turns out to be the mass of the particle, and thus
we see that Newton's law F = ma is replaced by F = mk, where k
is the spacetime curvature of the path. Einstein's metaphor for this
situation was that inside an accelerating elevator you accuse an object
in your hand of pushing on you, whereas in actuality you are pushing
on it to make it accelerate with the elevator. The analogy is precise,

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Answers: Chapter 9 469

because standing on the surface of the earth, you are accelerating (being
deflected from your natural path).

Section 9.4

The step should scale the vector so that the t component is a constant.
[1« HY HT] *- (constant/HT) X [FIX FlY HT].

Consider a circular orbit, and set up coordinates so position is (r, O, t)
and heading is (O, y, c). We are going to make sure the spatial projection
of the heading vector remains perpendicular to the position vector, a
condition which will ensure circularity. Step one unit of time, which
adds heading to position and Lorentz-rotates heading in the x, t plane by
HEADINGT X (m/r2) = mc/r2. This gives a new position (r, y, t + c)
and new heading (mc2/r2, y, c). The pure spatial parts of these are
(r, y) and (mc2/r2, y). To be perpendicular the dot product of these
must be 0: mc2/r + y2 = 0. Thus, m = (v/c)2r.

It is as read on the clock of any observer far from the center, where
the gaps are tiny and spacetime is flat.

The experienced elapsed time becomes small as the velocity ap-
proaches the speed of light. This adds to the time-interval distortion
to make a fast, close-to-the-sun orbiter experience very little time com-
pared with a slow, faraway observer.

We use MKS units, so the radius of the region is about 0.1 meter.
The time unit on the map corresponding to a spatial unit of 1 meter is
in clock time: 1/c 3 X iü seconds (see subsection 9.4.4). Now if a
thin wedge of thickness T time units thins to T/2 (roughly as shown in
the figure 9.14) in 0.1 meter, then it must have a maximum slope angle
of at least T/0.l = lOT. That's roughly the turning needed from wedge
to wedge, so TURNING . PER. TIME is equal to turning/wedgethickness,
which is rougly equal to 10. That means a rotation of one radian in
0.1 time units. Since 1 radian means a change in speed from rest to a
significant fraction of the speed of light, we get an acceleration roughly
equal to (speed acquired)/time, or lOc meters per second per map time
unit. Converting to velocity per second (rather than per map unit) gives
numerically 10e2 1018 m/sec2, which is iO17 times the acceleration of
gravity.

In n revolutions we want a demon turning of 1, 36OGMn/rc2 = 1.
n is about 4 million orbits, roughly 680 years of orbiting near the surface
of the earth.

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

ABS, 57

Additivity
as property of excess, 211

as property of rotation, 112

Airplane simulation, 157

Ambient isotopy, 181

APL, 419

Approximate symmetry, 118

Arc procedure, 10, 21, 439

Assignment operator, 394

Atlas, 306

BACK, 3

Basic ioop, 33

BASIC programing language, 407

BEARING procedure, 64, 69, 445

Bending
in curved space, 362, 368

of starlight, 373, 381, 388, 437

Bigons, 264
Bilateral symmetry, 126

Binary tree, 81

Black hole, 389

BOTH, 398

Branching models, 81

C curve, 92

Card view
on cube, 271

on sphere, 285

Carmichael number, 51

Cartesian coordinate system, 11
Character string, 394

Chase-and-evade-models, 72

CHECKEDGE, 251, 261

CHECK.INTERSECTIONS, 252, 312

CIRCLE procedure, 10
Circumference of circle
on cone, 355, 436

on sphere, 285, 297, 303, 461

in wedge representation, 349

Circus movement, 66

Classification, 167, 262

Clipped display, 154

Closed orbit, 380, 388, 467

Closed path, 24

vector representation of, 109

Index

Closed-path theorem, 24, 161, 163,

201

for surfaces, 207

Closed surface, 231, 235, 306

Closure
of DUOPOLY, 115
of GOSPEL, 128

of looping programs, 41

of POLY, 26
of P0LYSPI, 125, 428, 449

Colatitude, 296

Collapsing process, 184, 18

Command, 3, 393

Comments in Turtle Procedure
Notation, 396

Compound data object, 400

Compound data type, 406
Conditional expression, 397

Cone, 221, 235, 355, 436

Coordinate geometry, 11
Cosine approximation, 295

Coté, Joseph, 216

Crosscap, 340, 464

Crossing point, 163, 165, 174, 189,

453

handedness of, 174, 453

Cube, 225, 239, 241

atlas for, 307

double, 237, 340, 435, 459, 464

four-dimensional, 157, 322, 430

Curvature, 14, 201, 214

concentrated, 222, 231, 236, 269, 322

density of, 215

negative, 223, 355

of piecewise flat surface, 331

paint analogy, 218

temperature analogy, 370, 466

total, 217

Curved space, 226, 359

Curved surface, 202

Cutting and pasting, 232, 236

Cylinder, 219, 224, 232

Deflection, 367, 368, 389

Deformation, 162, 174, 228

for path versus for plane, 180

principle of, 163

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

472 Index

Deformation (cont.)
theorem for, 182, 183

Demon turning, 350, 352
Differential games, 74
Differential geometry, 201
Diophantine equations, 53, 443
Displacement, 106
Display list, 154
Distance distortion, 361, 368
Distance-preserving transformation,

300
Dodecahedron, 239
DOT operation, 252
Dot product, 149, 249, 294

linearity of, 149
Dragon curve, 93
Dual figures on sphere, 288
DUOPOLY, 114

in three dimensions, 156

Edges, identification of, 320
Effective states, 197, 199
Einstein, Albert, 226, 372, 374, 387
Elementary net transformations, 336
Ellipse, 23, 440
EQSPI, 77, 81, 87
as skeleton of GROW programs, 81

Equator
on torus, 358, 465
on cube, 262
on sphere, 204

Escher, M. C., 464
Euclid's Algorithm, 49
Euler Ø function, 51
Euler characteristic, 334, 338
local, 436, 464

Event, 363
Everywhere-the- same property
of cylinder, 229
of sphere, 215, 279
of turtle line, 213

Excess, 207, 269
and curvature, 218
around vertex at piecewise flat
surface, 331

Excess Additivity theorem, 211, 236
EXECUTE command, 71, 403

Extensibility, 405
Extrinsic, 13

FACE procedure, 63, 69
Facing a point, 63
in three dimensions, 156, 430

Feedback mechanism, 65, 175, 179
Fermat's Little Theorem, 51, 442,

450
Fibonacci numbers, 53
Finite-state process, 196, 274
FIRST operation, 401
First-class data object, 401
Fixed instruction program.

See Looping program
Fixed instruction sequence, 40
Fixed point, 298
Flange, 229, 237, 239
Flanged cylinder, 229
Flat, 220
Flat torus, 316, 321
Floating point number, 393
FOLLOW, 176, 179
FORWARD, 3
on cube, 252, 257
on piecewise square surface, 312
on sphere, 280
scaled, 80
in wedge representation, 353
FORWARD axis on sphere, 286
FORWARD-LEFT symmetry on sphere,

287, 302, 461
Four-bugs problem, 73, 76
generalized to n bugs, 76, 445

Fraenkel, G., 61

Galileo, 373, 423
GAPRATIO, 352
Gauss, Carl Friedrich, 213
Gauss-Bonnet Theorem, 337, 339, 435
Geometric indifference, principle of,

369, 373
Global information, 14, 165, 175
Global ir, 225
GOSPEL figure, 123
closure of, 128

Gosper, William, 123

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Index 473

Graustein, W. C., 167
Gravity, 226, 373
Great circle, 203
Greatest common divisor, 48

of Fibonacci numbers, 53, 444
for rational numbers, 52, 443

Grid approximations to paths, 183,
189, 454

Gunn, D., 61

Handle, 235, 371
Handle-attaching process, 233, 321
and Euler Characteristic, 338, 463

Heading of turtle, 4
as a vector, 137
on cube, 272

HIDETURTLE, 57
Hierarchical structure, 400
Hubert curve, 96
Homogeneity, 279
Homotopy, 181

Icosahedron, 239
IF. . .THEN. . .ELSE, 397
Input, 3, 395
Inscribed angle, 32
INSPI, 20
symmetry of, 36

Interior angle of regular n-gon, 31,
423, 441

Interpolation of turtle programs, 170
Intersection of two line segments, 249
Intrinsic, 13, 203, 220, 259
Intrinsic 7r, 226
Intrinsic versus extrinsic, 319
and turning, 324

Invariance, 33, 259
Irregular monogon, 262
Isotopy, 181
Isotropy, 279
ITEM operation, 401
Iteration, 5, 398

Jordan curve theorem, 182, 188

Kepler, Johannes, 239
Kink, 163, 166

Klein bottle, 327, 330, 338, 463
Klinokinesis, 61
Knotted handle, 235, 458
Knuth, Donald E., 444

Latitude line on sphere, 204
Law of cosines, 155

spherical, 303
Leaping correction on wedge map,

350, 388
Least common multiple, 44, 172
of a set of numbers, 449

LEFT, 3

on cube, 252
on piecewise square surface, 309
on sphere, 280
LEFT axis on sphere, 286
Level of recursion, 82
Light, speed of, 378, 387, 388
Linear interpolation, 173
Linear mapping, 255
Linearity, 112, 253, 259
of dot product, 149
principle of, 134, 150, 382
of projection, 148

Lisp, 419
List, 400
Local Euler characteristic, 436, 464
Local-global principle, 175, 219

in Pledge algorithm, 179
Local information, 14, 165, 175, 203,

307
Local variable, 402
Logo, 393, 412
Longitude, 204
Looping lemma, 35
Looping program, 40
boundedness of, 40
on cube, 275

Lorentz length, 389
Lorentz perpendicular, 377
Lorentz rotation, 374, 377, 379, 389,

467
Loxodromic spiral, 159
LPerp operation, 377
Lucas's theorem, 444

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

474 Index

Maze, 176
infinite, 197, 198
unfair, 192

Maze-solving algorithm, 176
MEMBER, 38
Möbius strip, 324, 329
Modeling

of curved world, 347
of branching, 81
of chasing and evading, 72
of sight, 63
of smell, 59

Modular planning, 260
Monogon on cube
irregular, 262
regular, 262, 268, 272

Multi-looping program, 127
MULTIPOLY, 119

in three dimensions, 156
symmetry of, 126, 449

n-holed torus, 321, 462
NESTED. TRIANGLE, 88
Net on a surface, 335
Net rotation of a POLY step, 289
Net rotation theorem, 289

proof of, 298
Nonorientable surface, 323, 328, 331
Nonpianar surface, 182, 189, 201

Octahedron, 239
Orbit, closed, 380, 388, 467
Orientable surface, 323
Orientation, 163, 323
Orientation-preserving identification,

323
Orientation-reversing identification,

323, 330
Orthokinesis, 61
Overlap, 163, 165

Parallel processing, Ti
Parallel projection, 145
Pascal program, 413
Patterns of growth, 77
PENDOWN, 4

PENT..JP, 4

Permutation, 248, 261
Perp operation, 251
Perpendicular projection, 147
Perspective projection, 152
Physical units, 388
Piecewise flat space, 322, 331
Piecewise flat surface, 305
Piecewise square surface, 308
bounds on total curvature of, 339,

464
face coordinates for, 310

Pitch, 143
Plane with hill, 348, 355
Platonic solid, 238, 341, 433
Pledge algorithm, 177, 119, 191,

198, 265
proof of, 191

Pledge, John, 177
Pointer, 206
Polar triangle, 304, 461
POLY, 15, 40, 44
in three dimensions, 156
on cube, 264, 274
on sphere, 283, 284, 291
permuted, 261
randomized, 68
structure of looping programs for, 35
symmetry of, 41
vector description of, 113

POLY closing theorem, 26, 31, 175,
197

breakdown of in three dimensions,
156, 429, 452

proof of, 26
vector form of, 111, 127, 135

POLY duality principle on sphere, 288
POLYSPI, 18, 77

closure of, 125
vertices of, 22

Position of turtle, 4
as a vector, 136

Predicate, 397
Prime number, 51, 127
Procedure, 5, 394, 405

body of, 5, 395
calling of, 395
input, 405

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Index 475

output, 405
title line of, 5

Projection, 251
linearity of, 148
parallel, 145
perpendicular, 147
perspective, 152
scaled, 149

Projective plane, 328, 330, 338, 463
Proj operation, 148
Pythagorean theorem

on cube, 265
on sphere, 291, 303

r,s,t coordinate system, 382
Radial circle

on cone, 224
on cube, 266, 269, 278

Radial plane, 383
Radial symmetry, 348
Radian measure, 163
Radius of curvature, 21, 439, 441

for circle on sphere, 285, 297, 303,
461

RAND, 56
RANDOM, 23

Random motion, 56
RANDOM MOVE, 265
Random walk, 265
Real number, 393, 406
Rectangular parallelopiped, 320
Recursion, 17, 81, 399, 406

level of, 82
Recursive designs, 87
Red shift, 372, 379, 466
Regular homotopy, 181
Regular monogon, 262, 268, 272
Regular net, 341, 436, 464
Regular tesselation, 341
Regular tetrahedron, 239, 262
Regular unexpectedly closed

spirolateral, 122
Relatively prime, 46
Relativity

General Theory of, 372
and gyroscope precession, 389, 469
simulation of, 381

Special Theory of, 378
REMAINDER, 29
REPEAT, 398
Repetition, 406
Representation, 244, 258
wedge, 343
REST operation, 401
RETURN command, 395
RIGHT, 3

on piecewise square surface, 309
on sphere, 280

Roll, 143
Rotation, 274, 280

in coordinates, 132
formula for, 133, 141, 280
in four dimensions, 157
in three dimensions, 142
intrinsic description for vectors, 133
Lorentz, 374, 377
scaling property of, 112

Rotation number, 24, 44
Rotational state, 247
Rotational symmetry, 41
Rubber-sheet deformation, 180, 189
Ruled surface, 456

Saddle surface, 223
Scalar multiplication, 108
in coordinates, 130

Schroeppel, Richard, 123, 128
Scissors, 166, 167
SCISSORS. POLY, 168
Scope of variable, 402
SETTURTLE, 57

SETXY, 11

SHOWTURTLE, 57
SHRINKPOLY, 170
Shuffle bug, 247, 261
Sierpinski curve, 100
Sight, modeling of, 63
Simple arc, 31
Simple closed curve, 24, 182
Simple-closed-path theorem, 24, 30,

175, 179, 191, 196, 445
proof of, 180

Smalitalk, 419
Smell, modeling of, 59

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

476 Index

Snowflake curve, 91
length and area of, 427, 448

Soap bubble in curved space, 370,
465

Solid angle, 226
Space-filling design, 96
in three dimensions, 159
SPACE.GAPRATIO, 381, 387
Spaceleap, 384
Spacelike direction, 374, 380
Spaceship simulation, 157
Spacetime, 363
Spatial plane, 383
Sphere, 201, 338
atlas representation of, 328
pointy, 316
wedge representation of, 356
SPHERE.POLY, 283
Spherical law of cosines, 303
Spherical polygon area, 213
Spherical Pythagorean Theorem,

291, 303
Spherical triangle area, 213, 455
Spiral, 198
equiangular, 77
loxodromic, 159
SPIRAL.GROWTH, 79, 85
Spirolateral, 37, 121
closure of, 121
simple, 37
slot process to determine closure of,

122, 450
unexpectedly closed, 39, 127

Square with handle, 218, 239
Starlike dodecahedron, 239
Starry monogon, 263
State, 33, 196, 244, 274, 281
State-change equivalent, 33
State-change operators, 33, 244, 252
on a cube, 244

State of turtle
in three dimensons, 144
on cube, 244
on sphere, 281
vector representation of, 136

State transparency, 83
Stevens, Peter, 85

Straight line, 202
in three dimensions, 380, 467
on cube, 242

Structure-directed operation, 401,
406, 425

Subprocedure, 6
Subroutine, 396
Surfaces
closed, 231, 306
nonorientable, 323
orientabl', 323
piecewise flat, 305
piecewise square, 308

Symmetry, 41
approximate, 118
bilateral, 126
of DUOPOLY, 117

of looping programs, 41
of MULTIPOLY, 126, 449
of POLY on sphere, 284
as property of dot product, 149
radial, 348

Symmetry angle for POLY on sphere,
292

Tachyon, 379, 467
Target-defending game, 74, 76
Temperature analogy to curvature,

370, 466
Tessaract, 322
Tesselation, 341
Tetrahedron, 239, 262
Thompson, D'Arcy, 85
Tiling designs, 103
Time-interval distortion, 367, 368,

380
TIME.GAPRATIO, 381, 387
Timeleap, 384
Timelike direction, 374
TO command, 395
Topological classification, 166
Topological disk, 182, 218, 228
Topological invariant, 162, 167, 231,

334
Topological type, 167, 321
Topology, 161, 227
Torus, 182, 189, 224, 232, 277, 338

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

Index 477

atlas representation of, 328 components of, 130
curvature of, 233 coordinates for, 130
curvature density of, 236, 459 three-dimensional, 140
equator of, 358, 465 unit-length, 131
flat, 316 zero, 108
n-holed, 321, 339 Vector rotation, 133
two-holed, 335, 338 Vector sum, 108
wedge representation of, 357 in coordinates, 130

Total curvature, 217, 231, 269 Vertex on cube, 242
of piecewise flat surface, 333

Total turning, 24, 161, 167, 177, 295 Wedge map, 344, 347
along circle in wedge representation, Wedge representation, 343

349 three-dimensional, 371
along circle on cone, 355, 436 Whitney, Hassler, 167, 174
along circle on sphere, 297, 303, 461 Whitney-Graustein Theorem, 167
and crossing points, 174, 453 Window coordinates for cube, 245,
around vertex of piecewise flat 256

surface, 332 Window view
on sphere, 302 on cube, 259, 270

Touch sensors, 176 on sphere, 285
TOWARDS procedure, 445 Wittgenstein, Ludwig, 241
Transition parity, 328 World line, 364, 370, 373
Triangle inequality, 285 Wormhole, 437
Trip turning, 205 Wraparound, 22
TURNING.PER.ANGLE, 352, 381, 387 Wrapping, 245
TURNING.PER.TIME, 381, 387
Turtle line, 202, 213, 224, 380 XCOR, 57
preservation of under transformation,

301 Yaw, 143
Turtle Procedure Notation, 393 YCOR, 57
Turtle state

in three dimensions, 144
vector representation of, 138

Turtle turning, 205
TURTLE.STATE, 57
Two-light experiment, 67, 69

Umbrella, curvature of, 226, 432
Unexpected closure, 39, 42

of figure, 120
of spirolateral, 122

Unit-length vector, 131

Variables, 394
Vector addition, commutativity of, 108
Vectors, 173, 250, 259

basis for, 130

Downloaded from http://direct.mit.edu/books/book-pdf/2095780/book_9780262362740.pdf by guest on 19 August 2023

	Cover
	Contents
	Series Foreword
	Preface
	Acknowledgments
	Preliminary Notes
	1 Introduction to Turtle Geometry
	2 Feedback, Growth, and Form
	3 Vector Methods in Turtle Geometry
	4 Topology of Turtle Paths
	5 Turtle Escapes the Plane
	6 Exploring the Cube
	7 A Second Look at the Sphere
	8 Piecewise Flat Surfaces
	9 Curved Space and General Relativity
	Appendixes
	Appendix A Turtle Procedure Notation
	Appendix B Turtle Programs in Conventional Computer Languages

	Hints and Answers
	Hints for Selected Exercises
	Answers to Selected Exercises

	Index

